RathodHarish's picture
Update app.py
d2ad93f verified
raw
history blame
8.67 kB
import gradio as gr
import requests
import librosa
import numpy as np
import os
import hashlib
from datetime import datetime
from simple_salesforce import Salesforce
# Salesforce credentials (store securely in environment variables)
SF_USERNAME = os.getenv("SF_USERNAME", "[email protected]")
SF_PASSWORD = os.getenv("SF_PASSWORD", "voicebot1")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "jq4VVHUFti6TmzJDjjegv2h6b")
SF_INSTANCE_URL = os.getenv("SF_INSTANCE_URL", "https://voicebot-dev-ed.my.salesforce.com") # Verify correct API URL
# Hugging Face Inference API token (store in environment variables)
HF_TOKEN = os.getenv("HF_TOKEN") # No default; must be set in Space secrets
# Initialize Salesforce connection
try:
sf = Salesforce(
username=SF_USERNAME,
password=SF_PASSWORD,
security_token=SF_SECURITY_TOKEN,
instance_url=SF_INSTANCE_URL
)
except Exception as e:
print(f"Failed to connect to Salesforce: {str(e)}")
sf = None
# Hugging Face API endpoints
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-tiny.en"
SYMPTOM_API_URL = "https://api-inference.huggingface.co/models/abhirajeshbhai/symptom-2-disease-net"
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
def compute_file_hash(file_path):
"""Compute MD5 hash of a file to check uniqueness."""
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def transcribe_audio(audio_file):
"""Transcribe audio using Whisper API."""
if not HF_TOKEN:
error_msg = (
"Error transcribing audio: HF_TOKEN not set. Please set HF_TOKEN in Space secrets at "
"https://huggingface.co/spaces/your-username/HealthVoiceAnalyzer/settings."
)
print(error_msg)
return error_msg
try:
with open(audio_file, "rb") as f:
data = f.read()
response = requests.post(WHISPER_API_URL, headers=HEADERS, data=data)
response.raise_for_status()
result = response.json()
print(f"Whisper API response: {result}")
transcription = result.get("text", "").strip()
if not transcription:
return "Transcription empty. Please provide clear audio describing symptoms in English."
print(f"Transcription: {transcription}")
return transcription
except requests.exceptions.HTTPError as e:
error_msg = f"Error transcribing audio: {str(e)}"
if e.response.status_code == 401:
error_msg = (
"Error transcribing audio: Unauthorized. Please check HF_TOKEN in Space secrets at "
"https://huggingface.co/spaces/your-username/HealthVoiceAnalyzer/settings. "
"Ensure token has Inference API access (get at https://huggingface.co/settings/tokens)."
)
print(f"Whisper API error: {error_msg}, Status: {e.response.status_code}")
return error_msg
except Exception as e:
error_msg = f"Error transcribing audio: {str(e)}"
print(error_msg)
return error_msg
def analyze_symptoms(text):
"""Analyze symptoms using Symptom-2-Disease API."""
if not HF_TOKEN:
error_msg = (
"Error analyzing symptoms: HF_TOKEN not set. Please set HF_TOKEN in Space secrets at "
"https://huggingface.co/spaces/your-username/HealthVoiceAnalyzer/settings."
)
print(error_msg)
return error_msg, 0.0
try:
if not text or "Error transcribing" in text:
return "No valid transcription for analysis.", 0.0
payload = {"inputs": text}
response = requests.post(SYMPTOM_API_URL, headers=HEADERS, json=payload)
response.raise_for_status()
result = response.json()
print(f"Symptom API response: {result}")
if result and isinstance(result, list) and len(result) > 0:
prediction = result[0][0]["label"]
score = result[0][0]["score"]
print(f"Health Prediction: {prediction}, Score: {score:.4f}")
return prediction, score
return "No health condition predicted", 0.0
except requests.exceptions.HTTPError as e:
error_msg = f"Error analyzing symptoms: {str(e)}"
if e.response.status_code == 401:
error_msg = (
"Error analyzing symptoms: Unauthorized. Please check HF_TOKEN in Space secrets at "
"https://huggingface.co/spaces/your-username/HealthVoiceAnalyzer/settings. "
"Ensure token has Inference API access (get at https://huggingface.co/settings/tokens)."
)
print(f"Symptom API error: {error_msg}, Status: {e.response.status_code}")
return error_msg, 0.0
except Exception as e:
error_msg = f"Error analyzing symptoms: {str(e)}"
print(error_msg)
return error_msg, 0.0
def analyze_voice(audio_file):
"""Analyze voice for health indicators."""
try:
# Ensure unique file name to avoid Gradio reuse
unique_path = f"/tmp/gradio/{datetime.now().strftime('%Y%m%d%H%M%S%f')}_{os.path.basename(audio_file)}"
os.rename(audio_file, unique_path)
audio_file = unique_path
# Log audio file info
file_hash = compute_file_hash(audio_file)
print(f"Processing audio file: {audio_file}, Hash: {file_hash}")
# Load audio to verify format
audio, sr = librosa.load(audio_file, sr=16000)
print(f"Audio shape: {audio.shape}, Sampling rate: {sr}, Duration: {len(audio)/sr:.2f}s, Mean: {np.mean(audio):.4f}, Std: {np.std(audio):.4f}")
# Transcribe audio
transcription = transcribe_audio(audio_file)
if "Error transcribing" in transcription:
return transcription
# Analyze symptoms
prediction, score = analyze_symptoms(transcription)
if "Error analyzing" in prediction:
return prediction
# Generate feedback
if prediction == "No health condition predicted":
feedback = "No significant health indicators detected."
else:
feedback = f"Possible health condition: {prediction} (confidence: {score:.4f}). Consult a doctor."
feedback += f"\n\n**Debug Info**: Transcription = '{transcription}', Prediction = {prediction}, Confidence = {score:.4f}, File Hash = {file_hash}"
feedback += "\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
# Store in Salesforce
if sf:
store_in_salesforce(audio_file, feedback, transcription, prediction, score)
# Clean up temporary audio file
try:
os.remove(audio_file)
print(f"Deleted temporary audio file: {audio_file}")
except Exception as e:
print(f"Failed to delete audio file: {str(e)}")
return feedback
except Exception as e:
return f"Error processing audio: {str(e)}"
def store_in_salesforce(audio_file, feedback, transcription, prediction, score):
"""Store analysis results in Salesforce."""
try:
sf.HealthAssessment__c.create({
"AssessmentDate__c": datetime.utcnow().isoformat(),
"Feedback__c": feedback,
"Transcription__c": transcription,
"Prediction__c": prediction,
"Confidence__c": float(score),
"AudioFileName__c": os.path.basename(audio_file)
})
except Exception as e:
print(f"Failed to store in Salesforce: {str(e)}")
def test_with_sample_audio():
"""Test the app with sample audio files."""
samples = ["audio_samples/sample.wav", "audio_samples/common_voice_en.wav"]
results = []
for sample in samples:
if os.path.exists(sample):
results.append(analyze_voice(sample))
else:
results.append(f"Sample not found: {sample}")
return "\n".join(results)
# Gradio interface
iface = gr.Interface(
fn=analyze_voice,
inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
outputs=gr.Textbox(label="Health Assessment Feedback"),
title="Health Voice Analyzer",
description="Record or upload a voice sample describing symptoms for preliminary health assessment. Supports English (transcription), with symptom analysis in English. Ensure HF_TOKEN is set in Space secrets."
)
if __name__ == "__main__":
print(test_with_sample_audio())
iface.launch(server_name="0.0.0.0", server_port=7860)