Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,29 @@
|
|
1 |
import gradio as gr
|
2 |
-
import requests
|
3 |
import librosa
|
4 |
import numpy as np
|
5 |
import os
|
6 |
import hashlib
|
7 |
from datetime import datetime
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
def compute_file_hash(file_path):
|
21 |
"""Compute MD5 hash of a file to check uniqueness."""
|
@@ -26,80 +34,49 @@ def compute_file_hash(file_path):
|
|
26 |
return hash_md5.hexdigest()
|
27 |
|
28 |
def transcribe_audio(audio_file):
|
29 |
-
"""Transcribe audio using Whisper
|
30 |
-
if not
|
31 |
-
|
32 |
-
"Error transcribing audio: HF_TOKEN not set. Please set HF_TOKEN in Space secrets at "
|
33 |
-
"https://huggingface.co/spaces/your-username/HealthVoiceAnalyzer/settings. "
|
34 |
-
"Generate a token with Inference API access at https://huggingface.co/settings/tokens."
|
35 |
-
)
|
36 |
-
print(error_msg)
|
37 |
-
return error_msg
|
38 |
try:
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
transcription = result.get("text", "").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
if not transcription:
|
47 |
return "Transcription empty. Please provide clear audio describing symptoms in English."
|
48 |
-
print(f"Transcription: {transcription}")
|
49 |
return transcription
|
50 |
-
except requests.exceptions.HTTPError as e:
|
51 |
-
error_msg = f"Error transcribing audio: {str(e)}"
|
52 |
-
if e.response.status_code == 401:
|
53 |
-
error_msg = (
|
54 |
-
"Error transcribing audio: Unauthorized. Please check HF_TOKEN in Space secrets at "
|
55 |
-
"https://huggingface.co/spaces/your-username/HealthVoiceAnalyzer/settings. "
|
56 |
-
"Ensure token has Inference API access (get at https://huggingface.co/settings/tokens)."
|
57 |
-
)
|
58 |
-
print(f"Whisper API error: {error_msg}, Status: {e.response.status_code}")
|
59 |
-
return error_msg
|
60 |
except Exception as e:
|
61 |
-
|
62 |
-
print(error_msg)
|
63 |
-
return error_msg
|
64 |
|
65 |
def analyze_symptoms(text):
|
66 |
-
"""Analyze symptoms using Symptom-2-Disease
|
67 |
-
if not
|
68 |
-
|
69 |
-
"Error analyzing symptoms: HF_TOKEN not set. Please set HF_TOKEN in Space secrets at "
|
70 |
-
"https://huggingface.co/spaces/your-username/HealthVoiceAnalyzer/settings. "
|
71 |
-
"Generate a token with Inference API access at https://huggingface.co/settings/tokens."
|
72 |
-
)
|
73 |
-
print(error_msg)
|
74 |
-
return error_msg, 0.0
|
75 |
try:
|
76 |
if not text or "Error transcribing" in text:
|
77 |
return "No valid transcription for analysis.", 0.0
|
78 |
-
|
79 |
-
response = requests.post(SYMPTOM_API_URL, headers=HEADERS, json=payload)
|
80 |
-
response.raise_for_status()
|
81 |
-
result = response.json()
|
82 |
-
print(f"Symptom API response: {result}")
|
83 |
if result and isinstance(result, list) and len(result) > 0:
|
84 |
-
prediction = result[0][
|
85 |
-
score = result[0][
|
86 |
print(f"Health Prediction: {prediction}, Score: {score:.4f}")
|
87 |
return prediction, score
|
88 |
return "No health condition predicted", 0.0
|
89 |
-
except requests.exceptions.HTTPError as e:
|
90 |
-
error_msg = f"Error analyzing symptoms: {str(e)}"
|
91 |
-
if e.response.status_code == 401:
|
92 |
-
error_msg = (
|
93 |
-
"Error analyzing symptoms: Unauthorized. Please check HF_TOKEN in Space secrets at "
|
94 |
-
"https://huggingface.co/spaces/your-username/HealthVoiceAnalyzer/settings. "
|
95 |
-
"Ensure token has Inference API access (get at https://huggingface.co/settings/tokens)."
|
96 |
-
)
|
97 |
-
print(f"Symptom API error: {error_msg}, Status: {e.response.status_code}")
|
98 |
-
return error_msg, 0.0
|
99 |
except Exception as e:
|
100 |
-
|
101 |
-
print(error_msg)
|
102 |
-
return error_msg, 0.0
|
103 |
|
104 |
def analyze_voice(audio_file):
|
105 |
"""Analyze voice for health indicators."""
|
@@ -164,7 +141,7 @@ iface = gr.Interface(
|
|
164 |
inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
|
165 |
outputs=gr.Textbox(label="Health Assessment Feedback"),
|
166 |
title="Health Voice Analyzer",
|
167 |
-
description="Record or upload a voice sample describing symptoms for preliminary health assessment. Supports English (transcription), with symptom analysis in English.
|
168 |
)
|
169 |
|
170 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
import os
|
5 |
import hashlib
|
6 |
from datetime import datetime
|
7 |
+
from transformers import pipeline
|
8 |
+
import soundfile as sf
|
9 |
+
import torch
|
10 |
|
11 |
+
# Initialize local models
|
12 |
+
try:
|
13 |
+
# Whisper for speech-to-text (English-only)
|
14 |
+
whisper = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device=-1) # CPU; use device=0 for GPU
|
15 |
+
print("Whisper model loaded successfully.")
|
16 |
+
except Exception as e:
|
17 |
+
print(f"Failed to load Whisper model: {str(e)}")
|
18 |
+
whisper = None
|
19 |
|
20 |
+
try:
|
21 |
+
# Symptom-2-Disease for health analysis
|
22 |
+
symptom_classifier = pipeline("text-classification", model="abhirajeshbhai/symptom-2-disease-net", device=-1) # CPU
|
23 |
+
print("Symptom-2-Disease model loaded successfully.")
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Failed to load Symptom-2-Disease model: {str(e)}")
|
26 |
+
symptom_classifier = None
|
27 |
|
28 |
def compute_file_hash(file_path):
|
29 |
"""Compute MD5 hash of a file to check uniqueness."""
|
|
|
34 |
return hash_md5.hexdigest()
|
35 |
|
36 |
def transcribe_audio(audio_file):
|
37 |
+
"""Transcribe audio using local Whisper model."""
|
38 |
+
if not whisper:
|
39 |
+
return "Error: Whisper model not loaded. Check logs for details."
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
try:
|
41 |
+
# Load and resample audio to 16,000 Hz
|
42 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
43 |
+
# Save as WAV for Whisper compatibility
|
44 |
+
temp_wav = f"/tmp/{os.path.basename(audio_file)}.wav"
|
45 |
+
sf.write(temp_wav, audio, sr)
|
46 |
+
|
47 |
+
# Transcribe
|
48 |
+
result = whisper(temp_wav)
|
49 |
transcription = result.get("text", "").strip()
|
50 |
+
print(f"Transcription: {transcription}")
|
51 |
+
|
52 |
+
# Clean up temp file
|
53 |
+
try:
|
54 |
+
os.remove(temp_wav)
|
55 |
+
except Exception:
|
56 |
+
pass
|
57 |
+
|
58 |
if not transcription:
|
59 |
return "Transcription empty. Please provide clear audio describing symptoms in English."
|
|
|
60 |
return transcription
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
except Exception as e:
|
62 |
+
return f"Error transcribing audio: {str(e)}"
|
|
|
|
|
63 |
|
64 |
def analyze_symptoms(text):
|
65 |
+
"""Analyze symptoms using local Symptom-2-Disease model."""
|
66 |
+
if not symptom_classifier:
|
67 |
+
return "Error: Symptom-2-Disease model not loaded. Check logs for details.", 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
try:
|
69 |
if not text or "Error transcribing" in text:
|
70 |
return "No valid transcription for analysis.", 0.0
|
71 |
+
result = symptom_classifier(text)
|
|
|
|
|
|
|
|
|
72 |
if result and isinstance(result, list) and len(result) > 0:
|
73 |
+
prediction = result[0]["label"]
|
74 |
+
score = result[0]["score"]
|
75 |
print(f"Health Prediction: {prediction}, Score: {score:.4f}")
|
76 |
return prediction, score
|
77 |
return "No health condition predicted", 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
except Exception as e:
|
79 |
+
return f"Error analyzing symptoms: {str(e)}", 0.0
|
|
|
|
|
80 |
|
81 |
def analyze_voice(audio_file):
|
82 |
"""Analyze voice for health indicators."""
|
|
|
141 |
inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
|
142 |
outputs=gr.Textbox(label="Health Assessment Feedback"),
|
143 |
title="Health Voice Analyzer",
|
144 |
+
description="Record or upload a voice sample describing symptoms for preliminary health assessment. Supports English (transcription), with symptom analysis in English."
|
145 |
)
|
146 |
|
147 |
if __name__ == "__main__":
|