Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
-
import torch
|
5 |
-
from transformers import Wav2Vec2Processor, Wav2Vec2Model
|
6 |
-
from simple_salesforce import Salesforce
|
7 |
import os
|
|
|
8 |
from datetime import datetime
|
|
|
9 |
|
10 |
# Salesforce credentials (store securely in environment variables)
|
11 |
SF_USERNAME = os.getenv("SF_USERNAME", "your_salesforce_username")
|
@@ -13,6 +13,9 @@ SF_PASSWORD = os.getenv("SF_PASSWORD", "your_salesforce_password")
|
|
13 |
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "your_salesforce_security_token")
|
14 |
SF_INSTANCE_URL = os.getenv("SF_INSTANCE_URL", "https://your-salesforce-instance.salesforce.com")
|
15 |
|
|
|
|
|
|
|
16 |
# Initialize Salesforce connection
|
17 |
try:
|
18 |
sf = Salesforce(
|
@@ -25,54 +28,105 @@ except Exception as e:
|
|
25 |
print(f"Failed to connect to Salesforce: {str(e)}")
|
26 |
sf = None
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def analyze_voice(audio_file):
|
33 |
"""Analyze voice for health indicators."""
|
34 |
try:
|
35 |
-
#
|
36 |
-
|
|
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
outputs = model(**inputs)
|
42 |
|
43 |
-
#
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
if respiratory_score > 0.1: # Lowered from 0.5
|
51 |
-
feedback += "Possible respiratory issue detected; consult a doctor. "
|
52 |
-
if mental_health_score > 0.1: # Lowered from 0.3
|
53 |
-
feedback += "Possible stress indicators detected; consider professional advice. "
|
54 |
|
55 |
-
|
|
|
56 |
feedback = "No significant health indicators detected."
|
|
|
|
|
57 |
|
58 |
-
feedback += "\n\n**
|
|
|
59 |
|
60 |
# Store in Salesforce
|
61 |
if sf:
|
62 |
-
store_in_salesforce(audio_file, feedback,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
return feedback
|
65 |
except Exception as e:
|
66 |
return f"Error processing audio: {str(e)}"
|
67 |
|
68 |
-
def store_in_salesforce(audio_file, feedback,
|
69 |
"""Store analysis results in Salesforce."""
|
70 |
try:
|
71 |
sf.HealthAssessment__c.create({
|
72 |
"AssessmentDate__c": datetime.utcnow().isoformat(),
|
73 |
"Feedback__c": feedback,
|
74 |
-
"
|
75 |
-
"
|
|
|
76 |
"AudioFileName__c": os.path.basename(audio_file)
|
77 |
})
|
78 |
except Exception as e:
|
@@ -80,7 +134,7 @@ def store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_s
|
|
80 |
|
81 |
def test_with_sample_audio():
|
82 |
"""Test the app with a sample audio file."""
|
83 |
-
sample_audio_path = "audio_samples/sample.wav"
|
84 |
if os.path.exists(sample_audio_path):
|
85 |
return analyze_voice(sample_audio_path)
|
86 |
return "Sample audio file not found."
|
@@ -91,9 +145,9 @@ iface = gr.Interface(
|
|
91 |
inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
|
92 |
outputs=gr.Textbox(label="Health Assessment Feedback"),
|
93 |
title="Health Voice Analyzer",
|
94 |
-
description="Record or upload a voice sample for preliminary health assessment. Supports English
|
95 |
)
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
-
print(test_with_sample_audio())
|
99 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
import librosa
|
4 |
import numpy as np
|
|
|
|
|
|
|
5 |
import os
|
6 |
+
import hashlib
|
7 |
from datetime import datetime
|
8 |
+
from simple_salesforce import Salesforce
|
9 |
|
10 |
# Salesforce credentials (store securely in environment variables)
|
11 |
SF_USERNAME = os.getenv("SF_USERNAME", "your_salesforce_username")
|
|
|
13 |
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "your_salesforce_security_token")
|
14 |
SF_INSTANCE_URL = os.getenv("SF_INSTANCE_URL", "https://your-salesforce-instance.salesforce.com")
|
15 |
|
16 |
+
# Hugging Face Inference API token (store in environment variables)
|
17 |
+
HF_TOKEN = os.getenv("HF_TOKEN", "your_huggingface_token")
|
18 |
+
|
19 |
# Initialize Salesforce connection
|
20 |
try:
|
21 |
sf = Salesforce(
|
|
|
28 |
print(f"Failed to connect to Salesforce: {str(e)}")
|
29 |
sf = None
|
30 |
|
31 |
+
# Hugging Face API endpoints
|
32 |
+
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-tiny.en"
|
33 |
+
SYMPTOM_API_URL = "https://api-inference.huggingface.co/models/abhirajeshbhai/symptom-2-disease-net"
|
34 |
+
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
|
35 |
+
|
36 |
+
def compute_file_hash(file_path):
|
37 |
+
"""Compute MD5 hash of a file to check uniqueness."""
|
38 |
+
hash_md5 = hashlib.md5()
|
39 |
+
with open(file_path, "rb") as f:
|
40 |
+
for chunk in iter(lambda: f.read(4096), b""):
|
41 |
+
hash_md5.update(chunk)
|
42 |
+
return hash_md5.hexdigest()
|
43 |
+
|
44 |
+
def transcribe_audio(audio_file):
|
45 |
+
"""Transcribe audio using Whisper API."""
|
46 |
+
try:
|
47 |
+
with open(audio_file, "rb") as f:
|
48 |
+
data = f.read()
|
49 |
+
response = requests.post(WHISPER_API_URL, headers=HEADERS, data=data)
|
50 |
+
response.raise_for_status()
|
51 |
+
result = response.json()
|
52 |
+
transcription = result.get("text", "")
|
53 |
+
print(f"Transcription: {transcription}")
|
54 |
+
return transcription
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Whisper API error: {str(e)}")
|
57 |
+
return f"Error transcribing audio: {str(e)}"
|
58 |
+
|
59 |
+
def analyze_symptoms(text):
|
60 |
+
"""Analyze symptoms using Symptom-2-Disease API."""
|
61 |
+
try:
|
62 |
+
payload = {"inputs": text}
|
63 |
+
response = requests.post(SYMPTOM_API_URL, headers=HEADERS, json=payload)
|
64 |
+
response.raise_for_status()
|
65 |
+
result = response.json()
|
66 |
+
if result and isinstance(result, list) and len(result) > 0:
|
67 |
+
prediction = result[0][0]["label"]
|
68 |
+
score = result[0][0]["score"]
|
69 |
+
print(f"Health Prediction: {prediction}, Score: {score:.4f}")
|
70 |
+
return prediction, score
|
71 |
+
return "No health condition predicted", 0.0
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Symptom API error: {str(e)}")
|
74 |
+
return f"Error analyzing symptoms: {str(e)}", 0.0
|
75 |
|
76 |
def analyze_voice(audio_file):
|
77 |
"""Analyze voice for health indicators."""
|
78 |
try:
|
79 |
+
# Log audio file info
|
80 |
+
file_hash = compute_file_hash(audio_file)
|
81 |
+
print(f"Processing audio file: {audio_file}, Hash: {file_hash}")
|
82 |
|
83 |
+
# Load audio to verify format
|
84 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
85 |
+
print(f"Audio shape: {audio.shape}, Sampling rate: {sr}, Duration: {len(audio)/sr:.2f}s, Mean: {np.mean(audio):.4f}, Std: {np.std(audio):.4f}")
|
|
|
86 |
|
87 |
+
# Transcribe audio
|
88 |
+
transcription = transcribe_audio(audio_file)
|
89 |
+
if "Error transcribing" in transcription:
|
90 |
+
return transcription
|
91 |
|
92 |
+
# Analyze symptoms
|
93 |
+
prediction, score = analyze_symptoms(transcription)
|
94 |
+
if "Error analyzing" in prediction:
|
95 |
+
return prediction
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
# Generate feedback
|
98 |
+
if prediction == "No health condition predicted":
|
99 |
feedback = "No significant health indicators detected."
|
100 |
+
else:
|
101 |
+
feedback = f"Possible health condition: {prediction} (confidence: {score:.4f}). Consult a doctor."
|
102 |
|
103 |
+
feedback += f"\n\n**Debug Info**: Transcription = '{transcription}', Prediction = {prediction}, Confidence = {score:.4f}, File Hash = {file_hash}"
|
104 |
+
feedback += "\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
|
105 |
|
106 |
# Store in Salesforce
|
107 |
if sf:
|
108 |
+
store_in_salesforce(audio_file, feedback, transcription, prediction, score)
|
109 |
+
|
110 |
+
# Clean up temporary audio file
|
111 |
+
try:
|
112 |
+
os.remove(audio_file)
|
113 |
+
print(f"Deleted temporary audio file: {audio_file}")
|
114 |
+
except Exception as e:
|
115 |
+
print(f"Failed to delete audio file: {str(e)}")
|
116 |
|
117 |
return feedback
|
118 |
except Exception as e:
|
119 |
return f"Error processing audio: {str(e)}"
|
120 |
|
121 |
+
def store_in_salesforce(audio_file, feedback, transcription, prediction, score):
|
122 |
"""Store analysis results in Salesforce."""
|
123 |
try:
|
124 |
sf.HealthAssessment__c.create({
|
125 |
"AssessmentDate__c": datetime.utcnow().isoformat(),
|
126 |
"Feedback__c": feedback,
|
127 |
+
"Transcription__c": transcription,
|
128 |
+
"Prediction__c": prediction,
|
129 |
+
"Confidence__c": float(score),
|
130 |
"AudioFileName__c": os.path.basename(audio_file)
|
131 |
})
|
132 |
except Exception as e:
|
|
|
134 |
|
135 |
def test_with_sample_audio():
|
136 |
"""Test the app with a sample audio file."""
|
137 |
+
sample_audio_path = "audio_samples/sample.wav"
|
138 |
if os.path.exists(sample_audio_path):
|
139 |
return analyze_voice(sample_audio_path)
|
140 |
return "Sample audio file not found."
|
|
|
145 |
inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
|
146 |
outputs=gr.Textbox(label="Health Assessment Feedback"),
|
147 |
title="Health Voice Analyzer",
|
148 |
+
description="Record or upload a voice sample describing symptoms for preliminary health assessment. Supports English (transcription), with symptom analysis in English."
|
149 |
)
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
+
print(test_with_sample_audio())
|
153 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|