Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
from transformers import DiffusionModel, DiffusionImageProcessor, AutoTokenizer | |
from threading import Thread | |
print("Starting to load the model to memory") | |
# Load the diffusion model and image processor | |
model = DiffusionModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
processor = DiffusionImageProcessor.from_model(model) | |
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
print("Successfully loaded the model to memory") | |
def generate_image(text): | |
# Generate an image from the given text prompt | |
inputs = tokenizer(text, return_tensors="pt") | |
# Run generation on GPU if available | |
inputs.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
# Run diffusion model for image generation | |
with torch.no_grad(): | |
result = processor.generate(**inputs) | |
# Return the generated image | |
return result[0] | |
# Define a function to handle user input and generate images | |
def image_generator(text): | |
generated_image = generate_image(text) | |
return generated_image | |
# Create a Gradio interface for the image generation | |
interface = gr.Interface( | |
fn=image_generator, | |
inputs="text", | |
outputs="image", | |
title="Image Generation from Text", | |
description="Enter a text prompt to generate an image.", | |
examples=["a cat sitting on a couch"] | |
) | |
# Launch the interface | |
interface.launch(share=True) | |