Spaces:
Running
Running
Raushan-123
commited on
Commit
•
0156cb1
1
Parent(s):
102f976
Upload 3 files
Browse files- app.py +313 -0
- packages.txt +2 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
from difflib import Differ
|
4 |
+
import ffmpeg
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import time
|
8 |
+
import aiohttp
|
9 |
+
import asyncio
|
10 |
+
|
11 |
+
|
12 |
+
# Set true if you're using huggingface inference API API https://huggingface.co/inference-api
|
13 |
+
API_BACKEND = True
|
14 |
+
# MODEL = 'facebook/wav2vec2-large-960h-lv60-self'
|
15 |
+
# MODEL = "facebook/wav2vec2-large-960h"
|
16 |
+
MODEL = "facebook/wav2vec2-base-960h"
|
17 |
+
# MODEL = "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram"
|
18 |
+
if API_BACKEND:
|
19 |
+
from dotenv import load_dotenv
|
20 |
+
import base64
|
21 |
+
import asyncio
|
22 |
+
load_dotenv(Path(".env"))
|
23 |
+
|
24 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
25 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
26 |
+
API_URL = f'https://api-inference.huggingface.co/models/{MODEL}'
|
27 |
+
|
28 |
+
else:
|
29 |
+
import torch
|
30 |
+
from transformers import pipeline
|
31 |
+
|
32 |
+
# is cuda available?
|
33 |
+
cuda = torch.device(
|
34 |
+
'cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
35 |
+
device = 0 if torch.cuda.is_available() else -1
|
36 |
+
speech_recognizer = pipeline(
|
37 |
+
task="automatic-speech-recognition",
|
38 |
+
model=f'{MODEL}',
|
39 |
+
tokenizer=f'{MODEL}',
|
40 |
+
framework="pt",
|
41 |
+
device=device,
|
42 |
+
)
|
43 |
+
|
44 |
+
videos_out_path = Path("./videos_out")
|
45 |
+
videos_out_path.mkdir(parents=True, exist_ok=True)
|
46 |
+
|
47 |
+
samples_data = sorted(Path('examples').glob('*.json'))
|
48 |
+
SAMPLES = []
|
49 |
+
for file in samples_data:
|
50 |
+
with open(file) as f:
|
51 |
+
sample = json.load(f)
|
52 |
+
SAMPLES.append(sample)
|
53 |
+
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))
|
54 |
+
|
55 |
+
total_inferences_since_reboot = 415
|
56 |
+
total_cuts_since_reboot = 1539
|
57 |
+
|
58 |
+
|
59 |
+
async def speech_to_text(video_file_path):
|
60 |
+
"""
|
61 |
+
Takes a video path to convert to audio, transcribe audio channel to text and char timestamps
|
62 |
+
|
63 |
+
Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
|
64 |
+
"""
|
65 |
+
global total_inferences_since_reboot
|
66 |
+
if (video_file_path == None):
|
67 |
+
raise ValueError("Error no video input")
|
68 |
+
|
69 |
+
video_path = Path(video_file_path)
|
70 |
+
try:
|
71 |
+
# convert video to audio 16k using PIPE to audio_memory
|
72 |
+
audio_memory, _ = ffmpeg.input(video_path).output(
|
73 |
+
'-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
|
74 |
+
except Exception as e:
|
75 |
+
raise RuntimeError("Error converting video to audio")
|
76 |
+
|
77 |
+
ping("speech_to_text")
|
78 |
+
last_time = time.time()
|
79 |
+
if API_BACKEND:
|
80 |
+
# Using Inference API https://huggingface.co/inference-api
|
81 |
+
# try twice, because the model must be loaded
|
82 |
+
for i in range(10):
|
83 |
+
for tries in range(4):
|
84 |
+
print(f'Transcribing from API attempt {tries}')
|
85 |
+
try:
|
86 |
+
inference_reponse = await query_api(audio_memory)
|
87 |
+
print(inference_reponse)
|
88 |
+
transcription = inference_reponse["text"].lower()
|
89 |
+
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
|
90 |
+
for chunk in inference_reponse['chunks']]
|
91 |
+
|
92 |
+
total_inferences_since_reboot += 1
|
93 |
+
print("\n\ntotal_inferences_since_reboot: ",
|
94 |
+
total_inferences_since_reboot, "\n\n")
|
95 |
+
return (transcription, transcription, timestamps)
|
96 |
+
except Exception as e:
|
97 |
+
print(e)
|
98 |
+
if 'error' in inference_reponse and 'estimated_time' in inference_reponse:
|
99 |
+
wait_time = inference_reponse['estimated_time']
|
100 |
+
print("Waiting for model to load....", wait_time)
|
101 |
+
# wait for loading model
|
102 |
+
# 5 seconds plus for certanty
|
103 |
+
await asyncio.sleep(wait_time + 5.0)
|
104 |
+
elif 'error' in inference_reponse:
|
105 |
+
raise RuntimeError("Error Fetching API",
|
106 |
+
inference_reponse['error'])
|
107 |
+
else:
|
108 |
+
break
|
109 |
+
else:
|
110 |
+
raise RuntimeError(inference_reponse, "Error Fetching API")
|
111 |
+
else:
|
112 |
+
|
113 |
+
try:
|
114 |
+
print(f'Transcribing via local model')
|
115 |
+
output = speech_recognizer(
|
116 |
+
audio_memory, return_timestamps="char", chunk_length_s=10, stride_length_s=(4, 2))
|
117 |
+
|
118 |
+
transcription = output["text"].lower()
|
119 |
+
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0].tolist(), chunk["timestamp"][1].tolist()]
|
120 |
+
for chunk in output['chunks']]
|
121 |
+
total_inferences_since_reboot += 1
|
122 |
+
|
123 |
+
print("\n\ntotal_inferences_since_reboot: ",
|
124 |
+
total_inferences_since_reboot, "\n\n")
|
125 |
+
return (transcription, transcription, timestamps)
|
126 |
+
except Exception as e:
|
127 |
+
raise RuntimeError("Error Running inference with local model", e)
|
128 |
+
|
129 |
+
|
130 |
+
async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
|
131 |
+
"""
|
132 |
+
Given original video input, text transcript + timestamps,
|
133 |
+
and edit ext cuts video segments into a single video
|
134 |
+
"""
|
135 |
+
global total_cuts_since_reboot
|
136 |
+
|
137 |
+
video_path = Path(video_in)
|
138 |
+
video_file_name = video_path.stem
|
139 |
+
if (video_in == None or text_in == None or transcription == None):
|
140 |
+
raise ValueError("Inputs undefined")
|
141 |
+
|
142 |
+
d = Differ()
|
143 |
+
# compare original transcription with edit text
|
144 |
+
diff_chars = d.compare(transcription, text_in)
|
145 |
+
# remove all text aditions from diff
|
146 |
+
filtered = list(filter(lambda x: x[0] != '+', diff_chars))
|
147 |
+
|
148 |
+
# filter timestamps to be removed
|
149 |
+
# timestamps_to_cut = [b for (a,b) in zip(filtered, timestamps_var) if a[0]== '-' ]
|
150 |
+
# return diff tokes and cutted video!!
|
151 |
+
|
152 |
+
# groupping character timestamps so there are less cuts
|
153 |
+
idx = 0
|
154 |
+
grouped = {}
|
155 |
+
for (a, b) in zip(filtered, timestamps):
|
156 |
+
if a[0] != '-':
|
157 |
+
if idx in grouped:
|
158 |
+
grouped[idx].append(b)
|
159 |
+
else:
|
160 |
+
grouped[idx] = []
|
161 |
+
grouped[idx].append(b)
|
162 |
+
else:
|
163 |
+
idx += 1
|
164 |
+
|
165 |
+
# after grouping, gets the lower and upter start and time for each group
|
166 |
+
timestamps_to_cut = [[v[0][1], v[-1][2]] for v in grouped.values()]
|
167 |
+
|
168 |
+
between_str = '+'.join(
|
169 |
+
map(lambda t: f'between(t,{t[0]},{t[1]})', timestamps_to_cut))
|
170 |
+
|
171 |
+
if timestamps_to_cut:
|
172 |
+
video_file = ffmpeg.input(video_in)
|
173 |
+
video = video_file.video.filter(
|
174 |
+
"select", f'({between_str})').filter("setpts", "N/FRAME_RATE/TB")
|
175 |
+
audio = video_file.audio.filter(
|
176 |
+
"aselect", f'({between_str})').filter("asetpts", "N/SR/TB")
|
177 |
+
|
178 |
+
output_video = f'./videos_out/{video_file_name}.mp4'
|
179 |
+
ffmpeg.concat(video, audio, v=1, a=1).output(
|
180 |
+
output_video).overwrite_output().global_args('-loglevel', 'quiet').run()
|
181 |
+
else:
|
182 |
+
output_video = video_in
|
183 |
+
|
184 |
+
tokens = [(token[2:], token[0] if token[0] != " " else None)
|
185 |
+
for token in filtered]
|
186 |
+
|
187 |
+
total_cuts_since_reboot += 1
|
188 |
+
ping("video_cuts")
|
189 |
+
print("\n\ntotal_cuts_since_reboot: ", total_cuts_since_reboot, "\n\n")
|
190 |
+
return (tokens, output_video)
|
191 |
+
|
192 |
+
|
193 |
+
async def query_api(audio_bytes: bytes):
|
194 |
+
"""
|
195 |
+
Query for Huggingface Inference API for Automatic Speech Recognition task
|
196 |
+
"""
|
197 |
+
payload = json.dumps({
|
198 |
+
"inputs": base64.b64encode(audio_bytes).decode("utf-8"),
|
199 |
+
"parameters": {
|
200 |
+
"return_timestamps": "char",
|
201 |
+
"chunk_length_s": 10,
|
202 |
+
"stride_length_s": [4, 2]
|
203 |
+
},
|
204 |
+
"options": {"use_gpu": False}
|
205 |
+
}).encode("utf-8")
|
206 |
+
async with aiohttp.ClientSession() as session:
|
207 |
+
async with session.post(API_URL, headers=headers, data=payload) as response:
|
208 |
+
print("API Response: ", response.status)
|
209 |
+
if response.headers['Content-Type'] == 'application/json':
|
210 |
+
return await response.json()
|
211 |
+
elif response.headers['Content-Type'] == 'application/octet-stream':
|
212 |
+
return await response.read()
|
213 |
+
elif response.headers['Content-Type'] == 'text/plain':
|
214 |
+
return await response.text()
|
215 |
+
else:
|
216 |
+
raise RuntimeError("Error Fetching API")
|
217 |
+
|
218 |
+
|
219 |
+
def ping(name):
|
220 |
+
url = f'https://huggingface.co/api/telemetry/spaces/radames/edit-video-by-editing-text/{name}'
|
221 |
+
print("ping: ", url)
|
222 |
+
|
223 |
+
async def req():
|
224 |
+
async with aiohttp.ClientSession() as session:
|
225 |
+
async with session.get(url) as response:
|
226 |
+
print("pong: ", response.status)
|
227 |
+
asyncio.create_task(req())
|
228 |
+
|
229 |
+
|
230 |
+
# ---- Gradio Layout -----
|
231 |
+
video_in = gr.Video(label="Video file", elem_id="video-container")
|
232 |
+
text_in = gr.Textbox(label="Transcription", lines=10, interactive=True)
|
233 |
+
video_out = gr.Video(label="Video Out")
|
234 |
+
diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True)
|
235 |
+
examples = gr.Dataset(components=[video_in], samples=VIDEOS, type="index")
|
236 |
+
|
237 |
+
css = """
|
238 |
+
#cut_btn, #reset_btn { align-self:stretch; }
|
239 |
+
#\\31 3 { max-width: 540px; }
|
240 |
+
.output-markdown {max-width: 65ch !important;}
|
241 |
+
#video-container{
|
242 |
+
max-width: 40rem;
|
243 |
+
}
|
244 |
+
"""
|
245 |
+
with gr.Blocks(css=css) as demo:
|
246 |
+
transcription_var = gr.State()
|
247 |
+
timestamps_var = gr.State()
|
248 |
+
with gr.Row():
|
249 |
+
with gr.Column():
|
250 |
+
gr.Markdown("""
|
251 |
+
# Edit Video By Editing Text
|
252 |
+
This project is a quick proof of concept of a simple video editor where the edits
|
253 |
+
are made by editing the audio transcription.
|
254 |
+
Using the [Huggingface Automatic Speech Recognition Pipeline](https://huggingface.co/tasks/automatic-speech-recognition)
|
255 |
+
with a fine tuned [Wav2Vec2 model using Connectionist Temporal Classification (CTC)](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self)
|
256 |
+
you can predict not only the text transcription but also the [character or word base timestamps](https://huggingface.co/docs/transformers/v4.19.2/en/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline.__call__.return_timestamps)
|
257 |
+
""")
|
258 |
+
|
259 |
+
with gr.Row():
|
260 |
+
|
261 |
+
examples.render()
|
262 |
+
|
263 |
+
def load_example(id):
|
264 |
+
video = SAMPLES[id]['video']
|
265 |
+
transcription = SAMPLES[id]['transcription'].lower()
|
266 |
+
timestamps = SAMPLES[id]['timestamps']
|
267 |
+
|
268 |
+
return (video, transcription, transcription, timestamps)
|
269 |
+
|
270 |
+
examples.click(
|
271 |
+
load_example,
|
272 |
+
inputs=[examples],
|
273 |
+
outputs=[video_in, text_in, transcription_var, timestamps_var],
|
274 |
+
queue=False)
|
275 |
+
with gr.Row():
|
276 |
+
with gr.Column():
|
277 |
+
video_in.render()
|
278 |
+
transcribe_btn = gr.Button("Transcribe Audio")
|
279 |
+
transcribe_btn.click(speech_to_text, [video_in], [
|
280 |
+
text_in, transcription_var, timestamps_var])
|
281 |
+
|
282 |
+
with gr.Row():
|
283 |
+
gr.Markdown("""
|
284 |
+
### Now edit as text
|
285 |
+
After running the video transcription, you can make cuts to the text below (only cuts, not additions!)""")
|
286 |
+
|
287 |
+
with gr.Row():
|
288 |
+
with gr.Column():
|
289 |
+
text_in.render()
|
290 |
+
with gr.Row():
|
291 |
+
cut_btn = gr.Button("Cut to video", elem_id="cut_btn")
|
292 |
+
# send audio path and hidden variables
|
293 |
+
cut_btn.click(cut_timestamps_to_video, [
|
294 |
+
video_in, transcription_var, text_in, timestamps_var], [diff_out, video_out])
|
295 |
+
|
296 |
+
reset_transcription = gr.Button(
|
297 |
+
"Reset to last trascription", elem_id="reset_btn")
|
298 |
+
reset_transcription.click(
|
299 |
+
lambda x: x, transcription_var, text_in)
|
300 |
+
with gr.Column():
|
301 |
+
video_out.render()
|
302 |
+
diff_out.render()
|
303 |
+
with gr.Row():
|
304 |
+
gr.Markdown("""
|
305 |
+
#### Video Credits
|
306 |
+
|
307 |
+
1. [Cooking](https://vimeo.com/573792389)
|
308 |
+
1. [Shia LaBeouf "Just Do It"](https://www.youtube.com/watch?v=n2lTxIk_Dr0)
|
309 |
+
1. [Mark Zuckerberg & Yuval Noah Harari in Conversation](https://www.youtube.com/watch?v=Boj9eD0Wug8)
|
310 |
+
""")
|
311 |
+
demo.queue()
|
312 |
+
if __name__ == "__main__":
|
313 |
+
demo.launch(debug=True)
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
libsndfile1
|
2 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio==3.35.2
|
4 |
+
datasets
|
5 |
+
librosa
|
6 |
+
ffmpeg-python
|
7 |
+
python-dotenv
|
8 |
+
aiohttp
|