File size: 4,695 Bytes
5ece497 592d6c4 1b95e3f 534c638 592d6c4 534c638 592d6c4 534c638 592d6c4 1269210 534c638 592d6c4 1269210 534c638 592d6c4 534c638 592d6c4 534c638 592d6c4 534c638 592d6c4 534c638 592d6c4 534c638 592d6c4 a4e32e3 1269210 534c638 592d6c4 1269210 592d6c4 1269210 592d6c4 534c638 592d6c4 a4e32e3 534c638 592d6c4 534c638 592d6c4 534c638 592d6c4 a4e32e3 592d6c4 1269210 a4e32e3 592d6c4 a4e32e3 1269210 534c638 592d6c4 534c638 592d6c4 534c638 592d6c4 534c638 592d6c4 1269210 534c638 592d6c4 534c638 592d6c4 1269210 a4e32e3 592d6c4 534c638 1269210 a4e32e3 eb04e6a 1269210 a4e32e3 592d6c4 a4e32e3 592d6c4 1269210 592d6c4 1269210 a4e32e3 534c638 592d6c4 1269210 592d6c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
from huggingface_hub import InferenceClient, HfApi
import os
import requests
import pandas as pd
import json
import pyarrow.parquet as pq
# Hugging Face ํ ํฐ ํ์ธ
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ง ์์์ต๋๋ค.")
# ๋ชจ๋ธ ์ ๋ณด ํ์ธ
api = HfApi(token=hf_token)
try:
client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct", token=hf_token)
except Exception as e:
print(f"Error initializing InferenceClient: {e}")
# ๋์ฒด ๋ชจ๋ธ์ ์ฌ์ฉํ๊ฑฐ๋ ์ค๋ฅ ์ฒ๋ฆฌ๋ฅผ ์ํํ์ธ์.
# ์: client = InferenceClient("gpt2", token=hf_token)
# ํ์ฌ ์คํฌ๋ฆฝํธ์ ๋๋ ํ ๋ฆฌ๋ฅผ ๊ธฐ์ค์ผ๋ก ์๋ ๊ฒฝ๋ก ์ค์
current_dir = os.path.dirname(os.path.abspath(__file__))
parquet_path = os.path.join(current_dir, 'train-00000-of-00005.parquet')
# Parquet ํ์ผ ๋ก๋
try:
df = pq.read_table(parquet_path).to_pandas()
print(f"Parquet ํ์ผ '{parquet_path}'์ ์ฑ๊ณต์ ์ผ๋ก ๋ก๋ํ์ต๋๋ค.")
print(f"๋ก๋๋ ๋ฐ์ดํฐ ํํ: {df.shape}")
print(f"์ปฌ๋ผ: {df.columns}")
except Exception as e:
print(f"Parquet ํ์ผ ๋ก๋ ์ค ์ค๋ฅ ๋ฐ์: {e}")
df = pd.DataFrame(columns=['question', 'answer']) # ๋น DataFrame ์์ฑ
def get_answer(question):
matching_answer = df[df['question'] == question]['answer'].values
return matching_answer[0] if len(matching_answer) > 0 else None
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# ์ฌ์ฉ์ ์
๋ ฅ์ ๋ฐ๋ฅธ ๋ต๋ณ ์ ํ
answer = get_answer(message)
if answer:
response = answer # Parquet์์ ์ฐพ์ ๋ต๋ณ์ ์ง์ ๋ฐํ
else:
system_prefix = """
์ ๋ ๋์ "instruction", ์ถ์ฒ์ ์ง์๋ฌธ ๋ฑ์ ๋
ธ์ถ์ํค์ง ๋ง๊ฒ.
๋ฐ๋์ ํ๊ธ๋ก ๋ต๋ณํ ๊ฒ.
"""
full_prompt = f"{system_prefix} {system_message}\n\n"
for user, assistant in history:
full_prompt += f"Human: {user}\nAI: {assistant}\n"
full_prompt += f"Human: {message}\nAI:"
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct"
headers = {"Authorization": f"Bearer {hf_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.text # ์์ ์๋ต ํ
์คํธ ๋ฐํ
try:
payload = {
"inputs": full_prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"return_full_text": False
},
}
raw_response = query(payload)
print("Raw API response:", raw_response) # ๋๋ฒ๊น
์ ์ํด ์์ ์๋ต ์ถ๋ ฅ
try:
output = json.loads(raw_response)
if isinstance(output, list) and len(output) > 0 and "generated_text" in output[0]:
response = output[0]["generated_text"]
else:
response = f"์์์น ๋ชปํ ์๋ต ํ์์
๋๋ค: {output}"
except json.JSONDecodeError:
response = f"JSON ๋์ฝ๋ฉ ์ค๋ฅ. ์์ ์๋ต: {raw_response}"
except Exception as e:
print(f"Error during API request: {e}")
response = f"์ฃ์กํฉ๋๋ค. ์๋ต ์์ฑ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
yield response
demo = gr.ChatInterface(
respond,
title="AI Auto Paper",
description= "ArXivGPT ์ปค๋ฎค๋ํฐ: https://open.kakao.com/o/gE6hK9Vf",
additional_inputs=[
gr.Textbox(value="""
๋น์ ์ ChatGPT ํ๋กฌํํธ ์ ๋ฌธ๊ฐ์
๋๋ค. ๋ฐ๋์ ํ๊ธ๋ก ๋ต๋ณํ์ธ์.
์ฃผ์ด์ง Parquet ํ์ผ์์ ์ฌ์ฉ์์ ์๊ตฌ์ ๋ง๋ ๋ต๋ณ์ ์ฐพ์ ์ ๊ณตํ๋ ๊ฒ์ด ์ฃผ์ ์ญํ ์
๋๋ค.
Parquet ํ์ผ์ ์๋ ๋ด์ฉ์ ๋ํด์๋ ์ ์ ํ ๋๋ต์ ์์ฑํด ์ฃผ์ธ์.
""", label="์์คํ
ํ๋กฌํํธ"),
gr.Slider(minimum=1, maximum=4000, value=1000, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
examples=[
["ํ๊ธ๋ก ๋ต๋ณํ ๊ฒ"],
["๊ณ์ ์ด์ด์ ์์ฑํ๋ผ"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch |