File size: 2,097 Bytes
5ece497 9fd2710 491e2bb 93ce35f 1269210 9fd2710 1269210 9fd2710 93ce35f 1269210 9fd2710 1269210 b30e24b 796bfa0 1269210 9fd2710 93ce35f 1269210 b0e5c12 1269210 9fd2710 1269210 9fd2710 1269210 9fd2710 1269210 9fd2710 93ce35f eb04e6a 1269210 c8de58e 9fd2710 1269210 9fd2710 1269210 93ce35f 1269210 9fd2710 1269210 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import gradio as gr
from huggingfacehub import InferenceClient
import os
import pandas as pd
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=os.getenv("H"))
def loadprompts():
prompts = pd.readcsv("prompts.csv")
return prompts
def respond(
systemmessage,
message,
history,
maxtokens,
temperature,
topp,
prompts,
):
messages = [{"role": "system", "content": systemmessage}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chatcompletion(
messages,
maxtokens=maxtokens,
stream=rue,
temperature=temperature,
topp=topp,
):
token = message.choices[0].delta.content
response += token
yield response
prompts = loadprompts()
demo = gr.ChatInterface(
respond,
inputs=[
gr.extbox(label="μμ€ν
λ©μμ§", value="μΉκ΅¬, λ°λμ νκΈλ‘ λ΅λ³νλΌ. λμ μ΄λ¦μ 'νκΈλ‘'μ
λλ€. μΆλ ₯μ markdown νμμΌλ‘ μΆλ ₯νλ©° νκΈ(νκ΅μ΄)λ‘ μΆλ ₯λκ² νκ³ νμνλ©΄ μΆλ ₯λ¬Έμ νκΈλ‘ λ²μνμ¬ μΆλ ₯νλΌ. λλ νμ μΉμ νκ³ μμΈνκ² λ΅λ³μ νλΌ. λλ λν μμμ μλλ°©μ μ΄λ¦μ λ¬Όμ΄λ³΄κ³ νΈμΉμ 'μΉκ΅¬'μ μ¬μ©ν κ². λ°λμ νκΈλ‘ λ 'λ°λ§'λ‘ λ΅λ³ν κ². λλ Assistant μν μ μΆ©μ€νμ¬μΌ νλ€. λ"),
gr.extbox(label="μ¬μ©μ μ
λ ₯"),
gr.State(default=[]),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="μ΅λ μλ‘μ΄ ν ν°"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="μ¨λ"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="op-P (ν΅μ¬ μνλ§)",
),
],
outputs="text",
)
if name == "main":
demo.launch() |