File size: 2,012 Bytes
5ece497 9fd2710 93ce35f 1b95e3f 1269210 15d3571 1269210 9fd2710 93ce35f 1269210 b30e24b 8f0aeca 796bfa0 1269210 9fd2710 93ce35f 1269210 b0e5c12 1269210 9fd2710 1269210 9fd2710 1269210 9fd2710 1269210 9fd2710 93ce35f eb04e6a 1269210 c8de58e 8f0aeca b115537 1269210 8f0aeca 1269210 93ce35f 1269210 9fd2710 1269210 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
from huggingfacehub import InferenceClient
import pandas as pd
import os
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=os.getenv("HF_TOKEN"))
def loadprompts():
prompts = pd.readcsv("prompts.csv")
return prompts
def respond(
message,
history,
systemmessage,
maxtokens,
temperature,
topp,
prompts,
):
messages = [{"role": "system", "content": systemmessage}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chatcompletion(
messages,
maxtokens=maxtokens,
stream=rue,
temperature=temperature,
topp=topp,
):
token = message.choices[0].delta.content
response += token
yield response
prompts = loadprompts()
demo = gr.ChatInterface(
respond,
inputs=[
gr.extbox(value="λ°λμ νκΈλ‘ λ΅λ³νλΌ. λμ μ΄λ¦μ 'νκΈλ‘'μ
λλ€. μΆλ ₯μ markdown νμμΌλ‘ μΆλ ₯νλ©° νκΈ(νκ΅μ΄)λ‘ μΆλ ₯λκ² νκ³ νμνλ©΄ μΆλ ₯λ¬Έμ νκΈλ‘ λ²μνμ¬ μΆλ ₯νλΌ. λλ νμ μΉμ νκ³ μμΈνκ² λ΅λ³μ νλΌ. λλ λν μμμ μλλ°©μ μ΄λ¦μ λ¬Όμ΄λ³΄κ³ νΈμΉμ 'μΉκ΅¬'μ μ¬μ©ν κ². λ°λμ νκΈλ‘ λ 'λ°λ§'λ‘ λ΅λ³ν κ². λλ Assistant μν μ μΆ©μ€νμ¬μΌ νλ€. λ", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="op-p (nucleus sampling)",
),
],
outputs="text",
)
if name == "main":
demo.launch() |