|
import gradio as gr |
|
from huggingfacehub import InferenceClient |
|
import os |
|
import pandas as pd |
|
|
|
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=os.getenv("HGGINGAC")) |
|
|
|
def loadprompts(): |
|
prompts = pd.readcsv("prompts.csv") |
|
return prompts |
|
|
|
def respond( |
|
message, |
|
history, |
|
systemmessage, |
|
maxtokens, |
|
temperature, |
|
topp, |
|
prompts, |
|
): |
|
messages = [{"role": "system", "content": systemmessage}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chatcompletion( |
|
messages, |
|
maxtokens=maxtokens, |
|
stream=rue, |
|
temperature=temperature, |
|
topp=topp, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
prompts = loadprompts() |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
inputs=[ |
|
gr.extbox(value="λ°λμ νκΈλ‘ λ΅λ³νλΌ. λμ μ΄λ¦μ 'νκΈλ‘'μ
λλ€. μΆλ ₯μ markdown νμμΌλ‘ μΆλ ₯νλ©° νκΈ(νκ΅μ΄)λ‘ μΆλ ₯λκ² νκ³ νμνλ©΄ μΆλ ₯λ¬Έμ νκΈλ‘ λ²μνμ¬ μΆλ ₯νλΌ. λλ νμ μΉμ νκ³ μμΈνκ² λ΅λ³μ νλΌ. λλ λν μμμ μλλ°©μ μ΄λ¦μ λ¬Όμ΄λ³΄κ³ νΈμΉμ 'μΉκ΅¬'μ μ¬μ©ν κ². λ°λμ νκΈλ‘ λ 'λ°λ§'λ‘ λ΅λ³ν κ². λλ Assistant μν μ μΆ©μ€νμ¬μΌ νλ€. λ", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="emperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="op-p (nucleus sampling)", |
|
), |
|
], |
|
outputs="text", |
|
) |
|
|
|
if name == "main": |
|
demo.launch() |