Ravi21 commited on
Commit
9ffe94b
·
1 Parent(s): 0e442bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -31
app.py CHANGED
@@ -1,10 +1,9 @@
1
  import pandas as pd
2
  import numpy as np
3
  import gradio as gr
4
- pip install streamlit
5
-
6
- import streamlit as st
7
  from transformers import AutoModelForMultipleChoice, AutoTokenizer
 
8
 
9
  # Load the model and tokenizer
10
  model_path = "/kaggle/input/deberta-v3-large-hf-weights"
@@ -43,32 +42,10 @@ iface = gr.Interface(
43
  description="Enter the prompt and options (A to E) below and get predictions.",
44
  )
45
 
46
- # Function to run Gradio Interface using Streamlit
47
- def run_gradio_interface():
48
- st.title("LLM Science Exam Demo")
49
- st.markdown("Enter the prompt and options (A to E) below and get predictions.")
50
-
51
- prompt = st.text_area("Prompt", value="This is the prompt", height=100)
52
- option_a = st.text_input("Option A", value="Option A text")
53
- option_b = st.text_input("Option B", value="Option B text")
54
- option_c = st.text_input("Option C", value="Option C text")
55
- option_d = st.text_input("Option D", value="Option D text")
56
- option_e = st.text_input("Option E", value="Option E text")
57
-
58
- sample_data = {
59
- "prompt": prompt,
60
- "A": option_a,
61
- "B": option_b,
62
- "C": option_c,
63
- "D": option_d,
64
- "E": option_e,
65
- }
66
-
67
- predictions = iface.process(sample_data)
68
- st.markdown("### Predictions:")
69
- st.write(predictions)
70
 
71
- # Run the Streamlit app
72
- if __name__ == "__main__":
73
- st.set_page_config(page_title="LLM Science Exam Demo", page_icon=":memo:")
74
- run_gradio_interface()
 
1
  import pandas as pd
2
  import numpy as np
3
  import gradio as gr
4
+ import torch
 
 
5
  from transformers import AutoModelForMultipleChoice, AutoTokenizer
6
+ from huggingface_hub import hf_hub_url, Repository
7
 
8
  # Load the model and tokenizer
9
  model_path = "/kaggle/input/deberta-v3-large-hf-weights"
 
42
  description="Enter the prompt and options (A to E) below and get predictions.",
43
  )
44
 
45
+ # Run the interface locally
46
+ iface.launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ # Once you have verified that the interface works as expected, proceed to create the Hugging Face space:
49
+ repo_url = hf_hub_url("your-username/your-repo-name")
50
+ repo = Repository.from_hf_hub(repo_url)
51
+ repo.push(path="./my_model", model=model, tokenizer=tokenizer, config=model.config)