Ravi21 commited on
Commit
51cf362
·
verified ·
1 Parent(s): e5294e7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -8
app.py CHANGED
@@ -1,7 +1,7 @@
1
  from diffusers import StableDiffusionPipeline
2
  import gc
3
 
4
- pipe = StableDiffusionPipeline.from_pretrained("prompthero/openjourney-v4").to("cpu")
5
  text_encoder = pipe.text_encoder
6
  text_encoder.eval()
7
  unet = pipe.unet
@@ -43,7 +43,6 @@ def convert_encoder(text_encoder:torch.nn.Module,ir_path:Path):
43
  del ov_model
44
  cleanup_cache()
45
  print(f"Text Encoder successfully converted to TR and saved to {ir_path}")
46
-
47
  if not text_encoder_path.exists():
48
  convert_encoder(text_encoder,text_encoder_path)
49
  else:
@@ -425,8 +424,8 @@ class OVStableDiffusionPipeline(DiffusionPipeline):
425
 
426
  return timesteps, num_inference_steps - t_start
427
 
428
- core=pv.Core()
429
 
 
430
  import ipywidgets as widgets
431
  device=widgets.Dropdown(
432
  options=core.available_devices+["AUTO"],
@@ -435,11 +434,12 @@ device=widgets.Dropdown(
435
  disabled=False,
436
  )
437
  device
438
-
439
-
440
  text_enc=core.compile_model(text_encoder_path,device.value)
441
-
442
  unet_model=core.compile_model(unet_path,device.value)
 
 
 
 
443
  from transformers import CLIPTokenizer
444
  from diffusers.schedulers import LMSDiscreteScheduler
445
  lms=LMSDiscreteScheduler(
@@ -455,6 +455,13 @@ pv_pipe=OVStableDiffusionPipeline(
455
  vae_encoder=vae_encoder,
456
  vae_decoder=vae_decoder,
457
  scheduler=lms)
 
 
 
 
 
 
 
458
 
459
  import gradio as gr
460
 
@@ -479,5 +486,4 @@ with gr.Blocks() as demo:
479
  try:
480
  demo.queue().launch(debug=True)
481
  except Exception:
482
- demo.queue().launch(share=True,debug=True)
483
-
 
1
  from diffusers import StableDiffusionPipeline
2
  import gc
3
 
4
+ pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to("cpu")
5
  text_encoder = pipe.text_encoder
6
  text_encoder.eval()
7
  unet = pipe.unet
 
43
  del ov_model
44
  cleanup_cache()
45
  print(f"Text Encoder successfully converted to TR and saved to {ir_path}")
 
46
  if not text_encoder_path.exists():
47
  convert_encoder(text_encoder,text_encoder_path)
48
  else:
 
424
 
425
  return timesteps, num_inference_steps - t_start
426
 
 
427
 
428
+ core=pv.Core()
429
  import ipywidgets as widgets
430
  device=widgets.Dropdown(
431
  options=core.available_devices+["AUTO"],
 
434
  disabled=False,
435
  )
436
  device
 
 
437
  text_enc=core.compile_model(text_encoder_path,device.value)
 
438
  unet_model=core.compile_model(unet_path,device.value)
439
+
440
+ pv_config={"INFERENCE_PRECISION_HINT":"f32"}if device.value !="CPU" else {}
441
+ vae_decoder=core.compile_model(VAE_DECODER_PATH,device.value,pv_config)
442
+ vae_encoder=core.compile_model(VAE_ENCODER_PATH,device.value,pv_config)
443
  from transformers import CLIPTokenizer
444
  from diffusers.schedulers import LMSDiscreteScheduler
445
  lms=LMSDiscreteScheduler(
 
455
  vae_encoder=vae_encoder,
456
  vae_decoder=vae_decoder,
457
  scheduler=lms)
458
+ from ipywidgets import widgets
459
+ sample_text=("A Dog wearing golden rich mens necklace")
460
+ text_prompt=widgets.Text(value=sample_text,description="A Dog wearing golden rich mens necklace ")
461
+ num_steps=widgets.IntSlider(min=1,max=50,value=20,description="steps:")
462
+ seed=widgets.IntSlider(min=0,max=10000000,description="seed:",value=54)
463
+ widgets.VBox([text_prompt,seed,num_steps])
464
+ result=pv_pipe(text_prompt.value,num_inference_steps=num_steps.value,seed=seed.value)
465
 
466
  import gradio as gr
467
 
 
486
  try:
487
  demo.queue().launch(debug=True)
488
  except Exception:
489
+ demo.queue().launch(share=True,debug=True)