File size: 7,725 Bytes
e832084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn as nn
import torch.nn.functional as F
from .correlation import correlation

def apply_offset(offset):

    sizes = list(offset.size()[2:])
    grid_list = torch.meshgrid([torch.arange(size, device=offset.device) for size in sizes])
    grid_list = reversed(grid_list)

    grid_list = [grid.float().unsqueeze(0) + offset[:, dim, ...]
        for dim, grid in enumerate(grid_list)]

    grid_list = [grid / ((size - 1.0) / 2.0) - 1.0
        for grid, size in zip(grid_list, reversed(sizes))] 

    return torch.stack(grid_list, dim=-1)


class ResBlock(nn.Module):
    def __init__(self, in_channels):
        super(ResBlock, self).__init__()
        self.block = nn.Sequential(
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False)
            )

    def forward(self, x):
        return self.block(x) + x


class DownSample(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(DownSample, self).__init__()
        self.block=  nn.Sequential(
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False)
            )

    def forward(self, x):
        return self.block(x)



class FeatureEncoder(nn.Module):
    def __init__(self, in_channels, chns=[64,128,256,256,256]):
        super(FeatureEncoder, self).__init__()
        self.encoders = []
        for i, out_chns in enumerate(chns):
            if i == 0:
                encoder = nn.Sequential(DownSample(in_channels, out_chns),
                                        ResBlock(out_chns),
                                        ResBlock(out_chns))
            else:
                encoder = nn.Sequential(DownSample(chns[i-1], out_chns),
                                         ResBlock(out_chns),
                                         ResBlock(out_chns))
            
            self.encoders.append(encoder)

        self.encoders = nn.ModuleList(self.encoders)


    def forward(self, x):
        encoder_features = []
        for encoder in self.encoders:
            x = encoder(x)
            encoder_features.append(x)
        return encoder_features

class RefinePyramid(nn.Module):
    def __init__(self, chns=[64,128,256,256,256], fpn_dim=256):
        super(RefinePyramid, self).__init__()
        self.chns = chns

        self.adaptive = []
        for in_chns in list(reversed(chns)):
            adaptive_layer = nn.Conv2d(in_chns, fpn_dim, kernel_size=1)
            self.adaptive.append(adaptive_layer)
        self.adaptive = nn.ModuleList(self.adaptive)

        self.smooth = []
        for i in range(len(chns)):
            smooth_layer = nn.Conv2d(fpn_dim, fpn_dim, kernel_size=3, padding=1)
            self.smooth.append(smooth_layer)
        self.smooth = nn.ModuleList(self.smooth)

    def forward(self, x):
        conv_ftr_list = x
        
        feature_list = []
        last_feature = None
        for i, conv_ftr in enumerate(list(reversed(conv_ftr_list))):
            feature = self.adaptive[i](conv_ftr)

            if last_feature is not None:
                feature = feature + F.interpolate(last_feature, scale_factor=2, mode='nearest')

            feature = self.smooth[i](feature)
            last_feature = feature
            feature_list.append(feature)

        return tuple(reversed(feature_list))


class AFlowNet(nn.Module):
    def __init__(self, num_pyramid, fpn_dim=256):
        super(AFlowNet, self).__init__()
        self.netMain = []
        self.netRefine = []
        for i in range(num_pyramid):
            netMain_layer = torch.nn.Sequential(
                torch.nn.Conv2d(in_channels=49, out_channels=128, kernel_size=3, stride=1, padding=1),
                torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
                torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
                torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
                torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1),
                torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
                torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1)
            )

            netRefine_layer = torch.nn.Sequential(
                torch.nn.Conv2d(2 * fpn_dim, out_channels=128, kernel_size=3, stride=1, padding=1),
                torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
                torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
                torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
                torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1),
                torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
                torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1)
            )
            self.netMain.append(netMain_layer)
            self.netRefine.append(netRefine_layer)

        self.netMain = nn.ModuleList(self.netMain)
        self.netRefine = nn.ModuleList(self.netRefine)


    def forward(self, x, x_warps, x_conds, warp_feature=True):
        last_flow = None

        for i in range(len(x_warps)):
          x_warp = x_warps[len(x_warps) - 1 - i]
          x_cond = x_conds[len(x_warps) - 1 - i]

          if last_flow is not None and warp_feature:
              x_warp_after = F.grid_sample(x_warp, last_flow.detach().permute(0, 2, 3, 1),
                   mode='bilinear', padding_mode='border')
          else:
              x_warp_after = x_warp

          tenCorrelation = F.leaky_relu(input=correlation.FunctionCorrelation(tenFirst=x_warp_after, tenSecond=x_cond, intStride=1), negative_slope=0.1, inplace=False)
          flow = self.netMain[i](tenCorrelation)
          flow = apply_offset(flow)

          if last_flow is not None:
              flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border')
          else:
              flow = flow.permute(0, 3, 1, 2)

          last_flow = flow
          x_warp = F.grid_sample(x_warp, flow.permute(0, 2, 3, 1),mode='bilinear', padding_mode='border')
          concat = torch.cat([x_warp,x_cond],1)
          flow = self.netRefine[i](concat)
          flow = apply_offset(flow)
          flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border')

          last_flow = F.interpolate(flow, scale_factor=2, mode='bilinear')

        x_warp = F.grid_sample(x, last_flow.permute(0, 2, 3, 1),
                     mode='bilinear', padding_mode='border')
        return x_warp, last_flow,


class AFWM(nn.Module):

    def __init__(self, opt, input_nc):
        super(AFWM, self).__init__()
        num_filters = [64,128,256,256,256]
        self.image_features = FeatureEncoder(3, num_filters) 
        self.cond_features = FeatureEncoder(input_nc, num_filters)
        self.image_FPN = RefinePyramid(num_filters)
        self.cond_FPN = RefinePyramid(num_filters)
        self.aflow_net = AFlowNet(len(num_filters))

    def forward(self, cond_input, image_input):
        cond_pyramids = self.cond_FPN(self.cond_features(cond_input)) # maybe use nn.Sequential
        image_pyramids = self.image_FPN(self.image_features(image_input))

        x_warp, last_flow  = self.aflow_net(image_input, image_pyramids, cond_pyramids)

        return x_warp, last_flow