File size: 7,725 Bytes
e832084 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from .correlation import correlation
def apply_offset(offset):
sizes = list(offset.size()[2:])
grid_list = torch.meshgrid([torch.arange(size, device=offset.device) for size in sizes])
grid_list = reversed(grid_list)
grid_list = [grid.float().unsqueeze(0) + offset[:, dim, ...]
for dim, grid in enumerate(grid_list)]
grid_list = [grid / ((size - 1.0) / 2.0) - 1.0
for grid, size in zip(grid_list, reversed(sizes))]
return torch.stack(grid_list, dim=-1)
class ResBlock(nn.Module):
def __init__(self, in_channels):
super(ResBlock, self).__init__()
self.block = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False)
)
def forward(self, x):
return self.block(x) + x
class DownSample(nn.Module):
def __init__(self, in_channels, out_channels):
super(DownSample, self).__init__()
self.block= nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False)
)
def forward(self, x):
return self.block(x)
class FeatureEncoder(nn.Module):
def __init__(self, in_channels, chns=[64,128,256,256,256]):
super(FeatureEncoder, self).__init__()
self.encoders = []
for i, out_chns in enumerate(chns):
if i == 0:
encoder = nn.Sequential(DownSample(in_channels, out_chns),
ResBlock(out_chns),
ResBlock(out_chns))
else:
encoder = nn.Sequential(DownSample(chns[i-1], out_chns),
ResBlock(out_chns),
ResBlock(out_chns))
self.encoders.append(encoder)
self.encoders = nn.ModuleList(self.encoders)
def forward(self, x):
encoder_features = []
for encoder in self.encoders:
x = encoder(x)
encoder_features.append(x)
return encoder_features
class RefinePyramid(nn.Module):
def __init__(self, chns=[64,128,256,256,256], fpn_dim=256):
super(RefinePyramid, self).__init__()
self.chns = chns
self.adaptive = []
for in_chns in list(reversed(chns)):
adaptive_layer = nn.Conv2d(in_chns, fpn_dim, kernel_size=1)
self.adaptive.append(adaptive_layer)
self.adaptive = nn.ModuleList(self.adaptive)
self.smooth = []
for i in range(len(chns)):
smooth_layer = nn.Conv2d(fpn_dim, fpn_dim, kernel_size=3, padding=1)
self.smooth.append(smooth_layer)
self.smooth = nn.ModuleList(self.smooth)
def forward(self, x):
conv_ftr_list = x
feature_list = []
last_feature = None
for i, conv_ftr in enumerate(list(reversed(conv_ftr_list))):
feature = self.adaptive[i](conv_ftr)
if last_feature is not None:
feature = feature + F.interpolate(last_feature, scale_factor=2, mode='nearest')
feature = self.smooth[i](feature)
last_feature = feature
feature_list.append(feature)
return tuple(reversed(feature_list))
class AFlowNet(nn.Module):
def __init__(self, num_pyramid, fpn_dim=256):
super(AFlowNet, self).__init__()
self.netMain = []
self.netRefine = []
for i in range(num_pyramid):
netMain_layer = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=49, out_channels=128, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1)
)
netRefine_layer = torch.nn.Sequential(
torch.nn.Conv2d(2 * fpn_dim, out_channels=128, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1)
)
self.netMain.append(netMain_layer)
self.netRefine.append(netRefine_layer)
self.netMain = nn.ModuleList(self.netMain)
self.netRefine = nn.ModuleList(self.netRefine)
def forward(self, x, x_warps, x_conds, warp_feature=True):
last_flow = None
for i in range(len(x_warps)):
x_warp = x_warps[len(x_warps) - 1 - i]
x_cond = x_conds[len(x_warps) - 1 - i]
if last_flow is not None and warp_feature:
x_warp_after = F.grid_sample(x_warp, last_flow.detach().permute(0, 2, 3, 1),
mode='bilinear', padding_mode='border')
else:
x_warp_after = x_warp
tenCorrelation = F.leaky_relu(input=correlation.FunctionCorrelation(tenFirst=x_warp_after, tenSecond=x_cond, intStride=1), negative_slope=0.1, inplace=False)
flow = self.netMain[i](tenCorrelation)
flow = apply_offset(flow)
if last_flow is not None:
flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border')
else:
flow = flow.permute(0, 3, 1, 2)
last_flow = flow
x_warp = F.grid_sample(x_warp, flow.permute(0, 2, 3, 1),mode='bilinear', padding_mode='border')
concat = torch.cat([x_warp,x_cond],1)
flow = self.netRefine[i](concat)
flow = apply_offset(flow)
flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border')
last_flow = F.interpolate(flow, scale_factor=2, mode='bilinear')
x_warp = F.grid_sample(x, last_flow.permute(0, 2, 3, 1),
mode='bilinear', padding_mode='border')
return x_warp, last_flow,
class AFWM(nn.Module):
def __init__(self, opt, input_nc):
super(AFWM, self).__init__()
num_filters = [64,128,256,256,256]
self.image_features = FeatureEncoder(3, num_filters)
self.cond_features = FeatureEncoder(input_nc, num_filters)
self.image_FPN = RefinePyramid(num_filters)
self.cond_FPN = RefinePyramid(num_filters)
self.aflow_net = AFlowNet(len(num_filters))
def forward(self, cond_input, image_input):
cond_pyramids = self.cond_FPN(self.cond_features(cond_input)) # maybe use nn.Sequential
image_pyramids = self.image_FPN(self.image_features(image_input))
x_warp, last_flow = self.aflow_net(image_input, image_pyramids, cond_pyramids)
return x_warp, last_flow
|