smart12 / inference_cpu.py
Ravi21's picture
Upload 4 files
6e858ba verified
raw
history blame
2.42 kB
import time
from options.test_options import TestOptions
from data.data_loader_test import CreateDataLoader
from models.networks import ResUnetGenerator, load_checkpoint
from models.afwm import AFWM
import torch.nn as nn
import os
import numpy as np
import torch
import cv2
import torch.nn.functional as F
from tqdm.auto import tqdm
opt = TestOptions().parse()
# list human-cloth pairs
with open('demo.txt', 'w') as file:
lines = [f'input.png {cloth_img_fn}\n' for cloth_img_fn in os.listdir('dataset/test_clothes')]
file.writelines(lines)
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('[INFO] Data Loaded')
warp_model = AFWM(opt, 3)
warp_model.eval()
load_checkpoint(warp_model, opt.warp_checkpoint)
print('[INFO] Warp Model Loaded')
gen_model = ResUnetGenerator(7, 4, 5, ngf=64, norm_layer=nn.BatchNorm2d)
gen_model.eval()
load_checkpoint(gen_model, opt.gen_checkpoint)
print('[INFO] Gen Model Loaded')
def get_result_images():
result_images = []
for i, data in tqdm(enumerate(dataset)):
real_image = data['image']
clothes = data['clothes']
##edge is extracted from the clothes image with the built-in function in python
edge = data['edge']
edge = torch.FloatTensor((edge.detach().numpy() > 0.5).astype(np.int))
clothes = clothes * edge
print(clothes.device, edge.device)
flow_out = warp_model(real_image, clothes)
warped_cloth, last_flow, = flow_out
warped_edge = F.grid_sample(edge.cuda(), last_flow.permute(0, 2, 3, 1),
mode='bilinear', padding_mode='zeros')
gen_inputs = torch.cat([real_image.cuda(), warped_cloth, warped_edge], 1)
gen_outputs = gen_model(gen_inputs)
p_rendered, m_composite = torch.split(gen_outputs, [3, 1], 1)
p_rendered = torch.tanh(p_rendered)
m_composite = torch.sigmoid(m_composite)
m_composite = m_composite * warped_edge
p_tryon = warped_cloth * m_composite + p_rendered * (1 - m_composite)
a = real_image.float().cuda()
b= clothes.cuda()
c = p_tryon
combine = torch.cat([b[0], c[0]], 2).squeeze()
cv_img = (combine.permute(1, 2, 0).detach().cpu().numpy() + 1) / 2
rgb = (cv_img * 255).astype(np.uint8)
result_images.append(rgb)
return result_images
get_result_images()