Ravi21 commited on
Commit
ca98e8d
·
verified ·
1 Parent(s): 9331575

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +112 -18
app.py CHANGED
@@ -1,25 +1,119 @@
 
 
 
 
 
 
1
  import os
2
- import streamlit as st
 
 
 
 
 
3
  from PIL import Image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
- from inference import get_result_images
 
 
 
 
 
 
 
 
 
6
 
7
- human_image_names = sorted([fn[:-4] for fn in os.listdir('dataset/test_img')])
8
 
9
- if st.sidebar.checkbox('Upload'):
10
- human_file = st.sidebar.file_uploader("Upload a Human Image", type=["png", "jpg", "jpeg"])
11
- if human_file is None:
12
- human_file = 'dataset/test_img/default.png'
13
- else:
14
- human_image_name = st.sidebar.selectbox("Choose a Human Image", human_image_names)
15
- human_file = f'dataset/test_img/{human_image_name}.png'
16
- if not os.path.exists(human_file):
17
- human_file = human_file.replace('.png', '.jpg')
18
- st.warning("Upload a Human Image in the sidebar for Virtual-Try-On")
19
 
20
- human = Image.open(human_file)
21
- human.save('dataset/test_img/input.png')
22
- st.sidebar.image(human, width=300)
23
 
24
- result_images = get_result_images()
25
- st.image(result_images, width=600)
 
1
+ import time
2
+ from options.test_options import TestOptions
3
+ from data.data_loader_test import CreateDataLoader
4
+ from models.networks import ResUnetGenerator, load_checkpoint
5
+ from models.afwm import AFWM
6
+ import torch.nn as nn
7
  import os
8
+ import numpy as np
9
+ import torch
10
+ import cv2
11
+ import torch.nn.functional as F
12
+
13
+ import io
14
  from PIL import Image
15
+ from flask import Flask, jsonify, request
16
+ from tqdm.auto import tqdm
17
+
18
+ app = Flask(__name__)
19
+
20
+ opt = TestOptions().parse()
21
+
22
+ # list human-cloth pairs
23
+ with open('demo.txt', 'w') as file:
24
+ lines = [f'input.png {cloth_img_fn}\n' for cloth_img_fn in os.listdir('dataset/test_clothes')]
25
+ file.writelines(lines)
26
+
27
+ warp_model = AFWM("", 3)
28
+ warp_model.eval()
29
+ warp_model.cuda()
30
+ load_checkpoint(warp_model, 'checkpoints/PFAFN/warp_model_final.pth')
31
+
32
+ gen_model = ResUnetGenerator(7, 4, 5, ngf=64, norm_layer=nn.BatchNorm2d)
33
+ gen_model.eval()
34
+ gen_model.cuda()
35
+ load_checkpoint(gen_model, 'checkpoints/PFAFN/gen_model_final.pth')
36
+
37
+
38
+ def save_cloth_transfers(image_bytes):
39
+
40
+ opt_name = 'demo'
41
+ opt_batchSize = 1
42
+
43
+ image = Image.open(io.BytesIO(image_bytes))
44
+ image.save('dataset/test_img/input.png')
45
+
46
+ data_loader = CreateDataLoader(opt)
47
+ dataset = data_loader.load_data()
48
+ dataset_size = len(data_loader)
49
+
50
+ start_epoch, epoch_iter = 1, 0
51
+
52
+ total_steps = (start_epoch - 1) * dataset_size + epoch_iter
53
+ step = 0
54
+ step_per_batch = dataset_size / opt_batchSize
55
+
56
+ for epoch in range(1, 2):
57
+ for i, data in tqdm(enumerate(dataset, start=epoch_iter)):
58
+ iter_start_time = time.time()
59
+ total_steps += opt_batchSize
60
+ epoch_iter += opt_batchSize
61
+
62
+ real_image = data['image']
63
+ clothes = data['clothes']
64
+ ##edge is extracted from the clothes image with the built-in function in python
65
+ edge = data['edge']
66
+ edge = torch.FloatTensor((edge.detach().numpy() > 0.5).astype(np.int))
67
+ clothes = clothes * edge
68
+
69
+ flow_out = warp_model(real_image.cuda(), clothes.cuda())
70
+ warped_cloth, last_flow, = flow_out
71
+ warped_edge = F.grid_sample(edge.cuda(), last_flow.permute(0, 2, 3, 1),
72
+ mode='bilinear', padding_mode='zeros')
73
+
74
+ gen_inputs = torch.cat([real_image.cuda(), warped_cloth, warped_edge], 1)
75
+ gen_outputs = gen_model(gen_inputs)
76
+ p_rendered, m_composite = torch.split(gen_outputs, [3, 1], 1)
77
+ p_rendered = torch.tanh(p_rendered)
78
+ m_composite = torch.sigmoid(m_composite)
79
+ m_composite = m_composite * warped_edge
80
+ p_tryon = warped_cloth * m_composite + p_rendered * (1 - m_composite)
81
+
82
+ path = 'results/' + opt_name
83
+ os.makedirs(path, exist_ok=True)
84
+ sub_path = path + '/PFAFN'
85
+ os.makedirs(sub_path, exist_ok=True)
86
+
87
+ if step % 1 == 0:
88
+ a = real_image.float().cuda()
89
+ b = clothes.cuda()
90
+ c = p_tryon
91
+ combine = torch.cat([a[0], b[0], c[0]], 2).squeeze()
92
+ cv_img = (combine.permute(1, 2, 0).detach().cpu().numpy() + 1) / 2
93
+ rgb = (cv_img * 255).astype(np.uint8)
94
+ bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
95
+ cv2.imwrite(sub_path + '/' + str(step) + '.jpg', bgr)
96
+
97
+ step += 1
98
+ if epoch_iter >= dataset_size:
99
+ break
100
+
101
+ return True
102
+
103
 
104
+ @app.route('/predict')
105
+ def predict():
106
+ if request.method == 'POST':
107
+ print('#'*100)
108
+ file = request.files['file']
109
+ image_bytes = file.read()
110
+ save_cloth_transfers(image_bytes=image_bytes)
111
+ return jsonify({'status': True})
112
+ else:
113
+ return jsonify({'message': "Only accept POST requests"})
114
 
 
115
 
116
+ if __name__ == '__main__':
117
+ app.run()
 
 
 
 
 
 
 
 
118
 
 
 
 
119