Ravinandan commited on
Commit
7d91294
·
verified ·
1 Parent(s): 457fc40

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -19
app.py CHANGED
@@ -4,23 +4,17 @@ from diffusers import AutoPipelineForImage2Image
4
  from diffusers.utils import load_image
5
  from PIL import Image
6
 
7
- # Streamlit UI
8
- st.title("Stable Diffusion Image-to-Image Generation")
9
 
10
- # Load the pipeline
11
- @st.cache_resource()
12
- def load_pipeline():
13
- pipeline = AutoPipelineForImage2Image.from_pretrained(
14
- "stabilityai/stable-diffusion-2-1", # Updated model for better quality
15
- torch_dtype=torch.float16,
16
- variant="fp16",
17
- use_safetensors=True
18
- )
19
- pipeline.enable_model_cpu_offload()
20
- pipeline.enable_xformers_memory_efficient_attention()
21
- return pipeline
22
-
23
- pipeline = load_pipeline()
24
 
25
  # Upload an image
26
  uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
@@ -29,11 +23,9 @@ if uploaded_file:
29
  init_image = Image.open(uploaded_file).convert("RGB")
30
  st.image(init_image, caption="Uploaded Image", use_column_width=True)
31
 
32
- # Prompt input
33
  prompt = st.text_input("Enter a prompt", "A futuristic city at sunset")
34
 
35
- # Generate button
36
  if st.button("Generate Image"):
37
  with st.spinner("Generating..."):
38
  image = pipeline(prompt, image=init_image).images[0]
39
- st.image(image, caption="Generated Image", use_column_width=True)
 
4
  from diffusers.utils import load_image
5
  from PIL import Image
6
 
7
+ st.title("Stable Diffusion Image-to-Image")
 
8
 
9
+ # Load the pipeline (no caching)
10
+ pipeline = AutoPipelineForImage2Image.from_pretrained(
11
+ "stabilityai/stable-diffusion-2-1",
12
+ torch_dtype=torch.float16,
13
+ variant="fp16",
14
+ use_safetensors=True
15
+ )
16
+ pipeline.enable_model_cpu_offload()
17
+ pipeline.enable_xformers_memory_efficient_attention()
 
 
 
 
 
18
 
19
  # Upload an image
20
  uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
 
23
  init_image = Image.open(uploaded_file).convert("RGB")
24
  st.image(init_image, caption="Uploaded Image", use_column_width=True)
25
 
 
26
  prompt = st.text_input("Enter a prompt", "A futuristic city at sunset")
27
 
 
28
  if st.button("Generate Image"):
29
  with st.spinner("Generating..."):
30
  image = pipeline(prompt, image=init_image).images[0]
31
+ st.image(image, caption="Generated Image", use_column_width=True)