File size: 8,015 Bytes
f99ed4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr

import openai
import re
import random
import os

openai.api_key = os.environ["OAI_key"]

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

dialog_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
dialog_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")

# Latent Diffusion
latent_diff_interface = gr.Interface.load("spaces/multimodalart/latentdiffusion", api_key="secret", enable_queue=True)

# Background Remover
background_remove_interface = gr.Interface.load("spaces/nateraw/background-remover", api_key="secret", enable_queue=True)

def is_generate_image(input):
  """ Return True if user wants to generate an image """

  response = openai.Completion.create(
    engine="text-davinci-002",
    prompt="Prompt: Generate an image of a lion.\nQuestion: Generate an image? True or False?\nAnswer:True.\n\nPrompt: Remove background of the image.\nQuestion: Generate an image? True or False?\nAnswer:False.\n\nPrompt:" + input + "\nQuestion: Generate an image? True or False\nAnswer:",
    temperature=0.7,
    max_tokens=256,
    top_p=1,
    frequency_penalty=0,
    presence_penalty=0
  )

  response = re.sub(r'[^A-Za-z]', '', response["choices"][-1]["text"])

  return response

def generate_image(input):

  """ Generate image using latent diffusion from the input prompt """

  # Find out what image to generate?
  input_prompt = openai.Completion.create(
  engine="text-davinci-002",
  prompt="Input: Generate an image of a \"lion\"\nQuestion: What is the prompt for image generation?\nAnswer: lion\n\nInput: I am feeling good. Please send me an image of the sky with mountains by Greg Rutkowski.\nQuestion: What is the prompt for image generation?\nAnswer: sky with mountains by Greg Rutkowski\n\nInput: " + input + "\nQuestion: What is the prompt for image generation?\nAnswer:",
  temperature=0.7,
  max_tokens=256,
  top_p=1,
  frequency_penalty=0,
  presence_penalty=0
  )

  text_prompt_for_image = input_prompt["choices"][-1]["text"]
  image_output = latent_diff_interface(text_prompt_for_image,45,256,256,1,5)
  text_response_for_image = "Generated image for: " + text_prompt_for_image

  return image_output[0], text_response_for_image

def remove_background(input, generated_image=None, generate_image_flag="False"):
  # Check if user is asking for removing background.
  response = openai.Completion.create(
    engine="text-davinci-002",
    prompt="Prompt: remove background.\nQuestion: Remove the background? True or False?\nAnswer: True\n\nPrompt: Remove the background of image.\nQuestion: Remove the background? True or False?\nAnswer: True\n\nPrompt: " + input + "\nQuestion: Remove the background? True or False?\nAnswer:",
    temperature=0.7,
    max_tokens=256,
    top_p=1,
    frequency_penalty=0,
    presence_penalty=0
  )

  response = re.sub(r'[^A-Za-z]', '', response["choices"][-1]["text"])

  if response == str(True) and generated_image != None:
    # Remove background
    rb_image_output = background_remove_interface(generated_image, 100)
  else:
    rb_image_output = None
  
  return rb_image_output

def random_HF_space(input):
  
  response = openai.Completion.create(
  engine="text-davinci-002",
  prompt="User: I am feeling bored.\nQuestion: Is the user bored? True or False?\nAnswer: True\n\nUser: " + input + "\nQuestion: Is the user bored? True or False?\nAnswer:",
  temperature=0.7,
  max_tokens=256,
  top_p=1,
  frequency_penalty=0,
  presence_penalty=0
  )

  spaces_list = ["<a href='https://huggingface.co/spaces/akhaliq/AnimeGANv2' target='_blank'> Click here for a suprise space </a>",
                 "<a href='https://huggingface.co/spaces/dalle-mini/dalle-mini' target='_blank'> Click here for a suprise space </a>",
                 "<a href='https://huggingface.co/spaces/lfqa/lfqa' target='_blank'> Click here for a suprise space </a>",
                 "<a href='https://huggingface.co/spaces/ronvolutional/ai-pokemon-card' target='_blank'> Click here for a suprise space </a>",
                 "<a href='https://huggingface.co/spaces/flax-community/chef-transformer' target='_blank'> Click here for a suprise space </a>",
                 "<a href='https://huggingface.co/spaces/osanseviero/draw_to_search' target='_blank'> Click here for a suprise space </a>"]

  response = re.sub(r'[^A-Za-z]', '', response["choices"][-1]["text"])

  if response == str(True):
    response = spaces_list[random.randint(0,5)]
  else:
    response = None

  return response


def DialogGPT(input, history=[], text_response_for_image = None):

    new_user_input_ids = dialog_tokenizer.encode(input + dialog_tokenizer.eos_token, return_tensors='pt')
    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)

    if text_response_for_image != None:
      text_response_for_image = dialog_tokenizer.encode(text_response_for_image + dialog_tokenizer.eos_token, return_tensors='pt')
      history = torch.cat([bot_input_ids, text_response_for_image], dim=-1).tolist()
    
    else:
      history = dialog_model.generate(bot_input_ids, max_length=1000, pad_token_id=dialog_tokenizer.eos_token_id).tolist()
    
    response = dialog_tokenizer.decode(history[0]).split("<|endoftext|>")
    response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]
    return response, history
  

def predict(input, history=[]):

    rs_output = None
    generated_image = None
    generated_text = None

    if len(history)>1:
      previously_generated_image = history[-1][0]
      previously_generated_image_flag = history[-2][0]
      history = [history[-3]]

      # Check if user is asking for removing background
      generated_image = remove_background(input, previously_generated_image, previously_generated_image_flag) 

      if generated_image != None:
        # Output as per removed background
        text_response_for_image = "Background removed."
        generated_text, history = DialogGPT(input, history, text_response_for_image) 

    else:

      # Check if user is asking for generating image
      generate_image_flag = is_generate_image(input)

      if generate_image_flag == str(True):
        # Generate Image
        generated_image, text_response_for_image = generate_image(input)
        generated_text, history = DialogGPT(input, history, text_response_for_image)

        # Append history with generated image and generated image flag
        history.append([generate_image_flag])
        history.append([generated_image])

      else: 
        # Check if user is bored
        rs_output = random_HF_space(input)
        if rs_output != None:
          # Output as per random space
          rs_text_input = "Try out the below space"
          generated_text, history = DialogGPT(input, history, rs_text_input)
        else:
          # Dialog GPT output
          generated_text, history = DialogGPT(input, history)
            
    return generated_text, history, rs_output, generated_image
    
examples = [['Who is Elon Musk?'],['Generate an image of horse running in grassland.'], ['Remove the background of the image.'], ['I am bored.']]
description = "Combines the sanity of Langauge models with HF spaces to create a unique experience. The chatbot is capable of understanding the user input for image generation, image background removal & a random space link if you are bored. For other inputs, the space uses DialogGPT-large."
article = "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=gradio-blocks_LM_meets_HF) \nHead on to <a href='https://huggingface.co/spaces/Gradio-Blocks/LM_meets_HF/discussions?type=discussion' target='_blank'>discussions</a> if you have any feedback."


gr.Interface(fn=predict,
             inputs=["text", "state"],
             outputs=["chatbot", "state", gr.outputs.HTML(), gr.outputs.Image()], title="Language Model Meets Hugging Face", 
             examples= examples, description=description, article=article).launch(debug=True, enable_queue=True)