RawadAlghamdi's picture
Create app.py
1d2fdbf verified
import gradio as gr
from transformers import pipeline
# Initialize pipelines (replace model names with ones available on Hugging Face)
# Story Generation Pipeline
story_generator = pipeline("text-generation", model="gpt2") # GPT-2 for text generation
# Image Generation Pipeline (placeholder; use a model like Stable Diffusion if available)
# Note: As of now, Hugging Face's pipeline doesn't natively support text-to-image, so you may need diffusers library
from diffusers import StableDiffusionPipeline
image_generator = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
image_generator = image_generator.to("cpu") # Use "cuda" if you have a GPU
# Text-to-Speech Pipeline
tts = pipeline("text-to-speech", model="facebook/tts_transformer-en-ljspeech") # English TTS
def generate_story_image_audio(prompt):
"""
Generate a story, an image, and audio based on the user's prompt.
Args:
prompt (str): The input prompt (e.g., "A brave little dragon").
Returns:
tuple: (story text, image, audio file path).
"""
# Step 1: Generate the story
story_output = story_generator(prompt, max_length=100, num_return_sequences=1, temperature=0.7)
story = story_output[0]["generated_text"].strip()
# Step 2: Generate an image based on the story
image = image_generator(story, num_inference_steps=30).images[0] # Generate one image
# Step 3: Generate audio from the story
audio_output = tts(story) # Assuming the model returns audio data
audio_path = "story_audio.wav"
with open(audio_path, "wb") as f:
f.write(audio_output["audio"]) # Save audio to a file
return story, image, audio_path
# Create the Gradio interface
interface = gr.Interface(
fn=generate_story_image_audio,
inputs=gr.Textbox(label="Enter a story prompt (e.g., 'A brave little dragon')"),
outputs=[
gr.Textbox(label="Generated Story"),
gr.Image(label="Story Illustration"),
gr.Audio(label="Story Narration")
],
title="Kids' Story Generator",
description="Generate a short story, illustration, and audio narration for kids based on your prompt!"
)
# Launch the interface
interface.launch()