Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
|
6 |
+
# -----------------------------------------------------------------
|
7 |
+
# Utility functions
|
8 |
+
# -----------------------------------------------------------------
|
9 |
+
|
10 |
+
def generate_colorful_image(height=256, width=256, p_blue=0.5):
|
11 |
+
"""
|
12 |
+
Generates a synthetic image (height x width) with:
|
13 |
+
- 'p_blue' fraction of blueish pixels
|
14 |
+
- (1 - p_blue) fraction of near-white/grey
|
15 |
+
Includes near-blue shades for more realistic challenge.
|
16 |
+
"""
|
17 |
+
img = np.zeros((height, width, 3), dtype=np.uint8)
|
18 |
+
for i in range(height):
|
19 |
+
for j in range(width):
|
20 |
+
if np.random.rand() < p_blue:
|
21 |
+
# Random shade of blue
|
22 |
+
b = np.random.randint(100, 256)
|
23 |
+
g = np.random.randint(0, 121)
|
24 |
+
r = np.random.randint(0, 121)
|
25 |
+
if np.random.rand() < 0.3: # shift to near-blue
|
26 |
+
g += np.random.randint(0, 30)
|
27 |
+
r += np.random.randint(0, 30)
|
28 |
+
b = min(b, 255)
|
29 |
+
g = min(g, 255)
|
30 |
+
r = min(r, 255)
|
31 |
+
img[i, j] = [b, g, r]
|
32 |
+
else:
|
33 |
+
# White/grey region
|
34 |
+
base = np.random.randint(180, 256)
|
35 |
+
diff_r = np.random.randint(-20, 20)
|
36 |
+
diff_g = np.random.randint(-20, 20)
|
37 |
+
diff_b = np.random.randint(-20, 20)
|
38 |
+
b = np.clip(base + diff_b, 0, 255)
|
39 |
+
g = np.clip(base + diff_g, 0, 255)
|
40 |
+
r = np.clip(base + diff_r, 0, 255)
|
41 |
+
img[i, j] = [b, g, r]
|
42 |
+
return img
|
43 |
+
|
44 |
+
def simple_threshold_blue(image_bgr):
|
45 |
+
"""
|
46 |
+
Simple approach:
|
47 |
+
1) Convert to HSV
|
48 |
+
2) Single broad threshold for blue
|
49 |
+
3) Count ratio of blue pixels
|
50 |
+
"""
|
51 |
+
hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV)
|
52 |
+
# Broad range for 'blue'
|
53 |
+
lower_blue = np.array([90, 50, 50], dtype=np.uint8)
|
54 |
+
upper_blue = np.array([130, 255, 255], dtype=np.uint8)
|
55 |
+
mask = cv2.inRange(hsv, lower_blue, upper_blue)
|
56 |
+
|
57 |
+
blue_pixels = cv2.countNonZero(mask)
|
58 |
+
total_pixels = image_bgr.shape[0] * image_bgr.shape[1]
|
59 |
+
perc_blue = (blue_pixels / total_pixels) * 100
|
60 |
+
return perc_blue, mask
|
61 |
+
|
62 |
+
def advanced_threshold_blue(image_bgr):
|
63 |
+
"""
|
64 |
+
Advanced approach:
|
65 |
+
1) Multiple color ranges for deep & light blues
|
66 |
+
2) Morphological cleaning
|
67 |
+
3) Count ratio of blue pixels
|
68 |
+
"""
|
69 |
+
hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV)
|
70 |
+
|
71 |
+
# Range 1: Deeper/darker blues
|
72 |
+
lower_blue1 = np.array([90, 50, 50], dtype=np.uint8)
|
73 |
+
upper_blue1 = np.array([130, 255, 255], dtype=np.uint8)
|
74 |
+
mask1 = cv2.inRange(hsv, lower_blue1, upper_blue1)
|
75 |
+
|
76 |
+
# Range 2: Lighter or near-cyan
|
77 |
+
lower_blue2 = np.array([80, 30, 50], dtype=np.uint8)
|
78 |
+
upper_blue2 = np.array([100, 255, 255], dtype=np.uint8)
|
79 |
+
mask2 = cv2.inRange(hsv, lower_blue2, upper_blue2)
|
80 |
+
|
81 |
+
combined_mask = cv2.bitwise_or(mask1, mask2)
|
82 |
+
|
83 |
+
# Morphological cleaning
|
84 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
|
85 |
+
cleaned_mask = cv2.morphologyEx(combined_mask, cv2.MORPH_OPEN, kernel)
|
86 |
+
cleaned_mask = cv2.morphologyEx(cleaned_mask, cv2.MORPH_CLOSE, kernel)
|
87 |
+
|
88 |
+
blue_pixels = cv2.countNonZero(cleaned_mask)
|
89 |
+
total_pixels = image_bgr.shape[0] * image_bgr.shape[1]
|
90 |
+
perc_blue = (blue_pixels / total_pixels) * 100
|
91 |
+
return perc_blue, cleaned_mask
|
92 |
+
|
93 |
+
def plot_color_histogram(image_bgr):
|
94 |
+
"""
|
95 |
+
Creates a matplotlib figure of B, G, and R channel histograms.
|
96 |
+
"""
|
97 |
+
color = ('b','g','r')
|
98 |
+
fig, ax = plt.subplots(figsize=(4,3))
|
99 |
+
for i,col in enumerate(color):
|
100 |
+
hist = cv2.calcHist([image_bgr],[i],None,[256],[0,256])
|
101 |
+
ax.plot(hist, color=col)
|
102 |
+
ax.set_xlim([0,256])
|
103 |
+
ax.set_title("Color Channel Histogram")
|
104 |
+
ax.set_xlabel("Pixel Intensity")
|
105 |
+
ax.set_ylabel("Frequency")
|
106 |
+
fig.tight_layout()
|
107 |
+
return fig
|
108 |
+
|
109 |
+
# -----------------------------------------------------------------
|
110 |
+
# Streamlit App
|
111 |
+
# -----------------------------------------------------------------
|
112 |
+
|
113 |
+
# Page config
|
114 |
+
st.set_page_config(page_title="ITC PSPD - Blue Area Detection Demo", layout="centered")
|
115 |
+
|
116 |
+
st.title("Color Detection Demo for ITC PSPD")
|
117 |
+
st.markdown("""
|
118 |
+
**This assignment showcases an Industry 4.0 approach** to **color segmentation**,
|
119 |
+
demonstrating how tools like Python, OpenCV, and Streamlit can automate **quality checks**
|
120 |
+
(similar to checking the quality of paperboards, packaging prints, or other color-critical products).
|
121 |
+
|
122 |
+
---
|
123 |
+
|
124 |
+
**Why It Matters for ITC PSPD**:
|
125 |
+
- ITC Paperboards & Specialty Papers Division (PSPD) is a leader in paper, packaging, and specialty solutions.
|
126 |
+
- Precise color detection ensures **consistent brand identity**, reduces **defects**, and aligns with ITC's
|
127 |
+
**sustainability** and **innovation** ethos.
|
128 |
+
|
129 |
+
Below, you can:
|
130 |
+
1. **Generate** a synthetic image with random shades of **blue** and **near-white** regions.
|
131 |
+
2. **Analyze** the image using both **Simple** and **Advanced** thresholding.
|
132 |
+
3. **Visualize** color histograms and masks.
|
133 |
+
4. See how this **digital transformation** approach can benefit large-scale production lines.
|
134 |
+
|
135 |
+
---
|
136 |
+
""")
|
137 |
+
|
138 |
+
st.sidebar.header("Generation Controls")
|
139 |
+
p_blue = st.sidebar.slider("Fraction of Blue-ish Pixels", 0.0, 1.0, 0.5, 0.05)
|
140 |
+
img_size = st.sidebar.selectbox("Image Size (px)", [128, 192, 256, 320], index=2)
|
141 |
+
|
142 |
+
if "random_image" not in st.session_state:
|
143 |
+
st.session_state["random_image"] = None
|
144 |
+
|
145 |
+
st.sidebar.markdown("---")
|
146 |
+
if st.sidebar.button("Generate New Random Image"):
|
147 |
+
img_bgr = generate_colorful_image(height=img_size, width=img_size, p_blue=p_blue)
|
148 |
+
st.session_state["random_image"] = img_bgr
|
149 |
+
|
150 |
+
# Check if we have an image
|
151 |
+
if st.session_state["random_image"] is None:
|
152 |
+
st.warning("Use the sidebar to generate a new image.")
|
153 |
+
else:
|
154 |
+
st.subheader("1) Randomly Generated Image & Color Analysis")
|
155 |
+
|
156 |
+
# Convert BGR->RGB for display
|
157 |
+
img_bgr = st.session_state["random_image"]
|
158 |
+
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
159 |
+
|
160 |
+
col1, col2 = st.columns(2)
|
161 |
+
with col1:
|
162 |
+
st.image(img_rgb, caption="Synthesized Image (RGB)", width=250)
|
163 |
+
|
164 |
+
with col2:
|
165 |
+
# Show color histogram
|
166 |
+
hist_fig = plot_color_histogram(img_bgr)
|
167 |
+
st.pyplot(hist_fig)
|
168 |
+
|
169 |
+
st.markdown("---")
|
170 |
+
|
171 |
+
# Simple Threshold
|
172 |
+
st.subheader("2) Simple Threshold Approach")
|
173 |
+
simple_perc_blue, simple_mask = simple_threshold_blue(img_bgr)
|
174 |
+
|
175 |
+
col3, col4 = st.columns(2)
|
176 |
+
with col3:
|
177 |
+
st.write(f"**Blue Percentage (Simple):** {simple_perc_blue:.2f}%")
|
178 |
+
st.progress(min(simple_perc_blue/100, 1.0))
|
179 |
+
with col4:
|
180 |
+
st.image(simple_mask, caption="Simple Mask (white=detected blue)", width=250)
|
181 |
+
|
182 |
+
st.markdown("---")
|
183 |
+
|
184 |
+
# Advanced Threshold
|
185 |
+
st.subheader("3) Advanced Threshold Approach")
|
186 |
+
adv_perc_blue, adv_mask = advanced_threshold_blue(img_bgr)
|
187 |
+
|
188 |
+
col5, col6 = st.columns(2)
|
189 |
+
with col5:
|
190 |
+
st.write(f"**Blue Percentage (Advanced):** {adv_perc_blue:.2f}%")
|
191 |
+
st.progress(min(adv_perc_blue/100, 1.0))
|
192 |
+
with col6:
|
193 |
+
st.image(adv_mask, caption="Advanced Mask (white=detected blue)", width=250)
|
194 |
+
|
195 |
+
st.markdown("""
|
196 |
+
---
|
197 |
+
## Relevance to ITC PSPD:
|
198 |
+
- **Digital Quality Control**: A color detection system like this can **validate printed matter** (cartons, labels) in real time.
|
199 |
+
- **Big Data Integration**: Results could be uploaded to a **data lake**, enabling historical trend analysis and continuous improvement.
|
200 |
+
- **Sustainability**: **Accurate color checks** reduce material wastage, aligning with ITC’s triple bottom line (economic, social, environmental) philosophy.
|
201 |
+
- **Industry 4.0**: Coupling this solution with **IoT** sensors, real-time dashboards, and advanced analytics ensures **agile and data-driven** paperboard manufacturing.
|
202 |
+
|
203 |
+
## Made By:
|
204 |
+
**Kaustubh Raykar**
|
205 |
+
- +91 7020524609
|
206 |
+
- [[email protected]](mailto:[email protected])
|
207 |
+
- [[email protected]](mailto:[email protected])
|
208 |
+
|
209 |
+
---
|
210 |
+
|
211 |
+
**Thank you for exploring this demonstration!**
|
212 |
+
""")
|
213 |
+
|
214 |
+
# -----------------------------------------------------------------
|
215 |
+
# How the Code Works - Explanation
|
216 |
+
# -----------------------------------------------------------------
|
217 |
+
st.header("How This Code Works")
|
218 |
+
st.markdown("""
|
219 |
+
1. **Utility Functions**
|
220 |
+
- **generate_colorful_image**: Creates a synthetic image with a customizable proportion of blue pixels. This simulates different real-world scenarios, such as varying amounts of a brand color on packaging.
|
221 |
+
- **simple_threshold_blue**: Uses basic HSV thresholding to identify blue pixels. Provides a quick, broad detection method.
|
222 |
+
- **advanced_threshold_blue**: Combines multiple ranges for different shades of blue and applies morphological operations for noise reduction, giving more robust results.
|
223 |
+
- **plot_color_histogram**: Plots separate color channel (B, G, R) histograms to visualize the distribution of pixel intensities.
|
224 |
+
|
225 |
+
2. **Streamlit Layout**
|
226 |
+
- **Sidebar**: Controls to adjust the fraction of blueish pixels and the image size. A button to generate a new random image is also included.
|
227 |
+
- **Main Page**:
|
228 |
+
- Displays the generated image and its color histogram side by side.
|
229 |
+
- Shows the simple vs. advanced detection masks with the calculated percentage of blue.
|
230 |
+
- Progress bars indicate the proportion of blue visually.
|
231 |
+
|
232 |
+
3. **Industry 4.0 Context**
|
233 |
+
- By integrating this approach with IoT devices, large-scale manufacturing lines can automate color checks. The masks and percentage calculations serve as a foundation for real-time QA alerts, data logging, and future analytics.
|
234 |
+
|
235 |
+
4. **Execution Flow**
|
236 |
+
1. When the user clicks "Generate New Random Image," it calls `generate_colorful_image()` to create a fresh synthetic image.
|
237 |
+
2. The image is converted to RGB for display. Meanwhile, `plot_color_histogram()` renders a histogram for deeper insight into color distribution.
|
238 |
+
3. The **simple_threshold_blue** and **advanced_threshold_blue** functions each produce their own masks and calculations, displayed in the main interface.
|
239 |
+
4. By comparing the results of both methods, users can see the differences in detection accuracy and how morphological operations can refine the result.
|
240 |
+
|
241 |
+
This cohesive setup ensures a **user-friendly**, **real-time** demonstration of how color segmentation can be applied to industrial use cases—especially relevant for ITC PSPD's commitments to **quality** and **innovation**.
|
242 |
+
""")
|