File size: 27,004 Bytes
c3e7177 4138664 c3e7177 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
import streamlit as st
import torch
import torch.nn as nn
import pickle
import numpy as np
import pandas as pd
from typing import List, Dict, Tuple, Optional
# RDKit for molecule handling
from rdkit import Chem
from rdkit.Chem import Draw, Descriptors
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
# Visualization libraries
import matplotlib.pyplot as plt
import seaborn as sns
# For generating images in Streamlit
from PIL import Image
# Suppress warnings in RDKit
import warnings
warnings.filterwarnings('ignore')
# Set Seaborn style
sns.set_style('whitegrid')
# Additional imports for GNN
import torch.nn.functional as F
from torch.nn import Linear, Sequential, BatchNorm1d, ReLU
from torch_geometric.data import Data
from torch_geometric.nn import GCNConv, GINConv
from torch_geometric.nn import global_mean_pool, global_add_pool
# Function to load the VAE model
@st.cache_resource
def load_vae_model(device):
# Load the vocabulary
with open('vae_vocab.pkl', 'rb') as f:
vocab = pickle.load(f)
vocab_size = len(vocab)
# Initialize the model with the same parameters
hidden_dim = 256 # Ensure this matches your trained model
latent_dim = 64 # Ensure this matches your trained model
# Define the VAE class (same as in your training script)
class VAE(nn.Module):
def __init__(self, vocab_size: int, hidden_dim: int, latent_dim: int):
super(VAE, self).__init__()
self.vocab_size = vocab_size
self.hidden_dim = hidden_dim
self.latent_dim = latent_dim
self.encoder = nn.GRU(vocab_size, hidden_dim, batch_first=True)
self.fc_mu = nn.Linear(hidden_dim, latent_dim)
self.fc_logvar = nn.Linear(hidden_dim, latent_dim)
self.decoder = nn.GRU(vocab_size + latent_dim, hidden_dim, batch_first=True)
self.fc_output = nn.Linear(hidden_dim, vocab_size)
def encode(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
_, h = self.encoder(x)
h = h.squeeze(0)
return self.fc_mu(h), self.fc_logvar(h)
def reparameterize(self, mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z: torch.Tensor, max_length: int) -> torch.Tensor:
batch_size = z.size(0)
h = torch.zeros(1, batch_size, self.hidden_dim).to(z.device)
x = torch.zeros(batch_size, 1, self.vocab_size).to(z.device)
x[:, 0, vocab['<']] = 1 # Start token
outputs = []
for _ in range(max_length):
z_input = z.unsqueeze(1)
decoder_input = torch.cat([x, z_input], dim=2)
output, h = self.decoder(decoder_input, h)
output = self.fc_output(output)
outputs.append(output)
x = torch.softmax(output, dim=-1)
return torch.cat(outputs, dim=1)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z, x.size(1)), mu, logvar
model = VAE(vocab_size, hidden_dim, latent_dim)
model.load_state_dict(torch.load('vae_model.pth', map_location=device))
model.to(device)
model.eval()
return model, vocab
# Function to generate molecules using VAE
def generate_smiles_vae(model, vocab, num_samples=10, max_length=100):
model.eval()
inv_vocab = {v: k for k, v in vocab.items()}
generated_smiles = []
device = next(model.parameters()).device
with torch.no_grad():
for _ in range(num_samples):
z = torch.randn(1, model.latent_dim).to(device)
x = torch.zeros(1, 1, model.vocab_size).to(device)
x[0, 0, vocab['<']] = 1
h = torch.zeros(1, 1, model.hidden_dim).to(device)
smiles = ''
for _ in range(max_length):
z_input = z.unsqueeze(1)
decoder_input = torch.cat([x, z_input], dim=2)
output, h = model.decoder(decoder_input, h)
output = model.fc_output(output)
probs = torch.softmax(output.squeeze(0), dim=-1)
next_char = torch.multinomial(probs, 1).item()
if next_char == vocab['>']:
break
smiles += inv_vocab.get(next_char, '')
x = torch.zeros(1, 1, model.vocab_size).to(device)
x[0, 0, next_char] = 1
generated_smiles.append(smiles)
return generated_smiles
# Function to post-process and validate SMILES strings
def enhanced_post_process_smiles(smiles: str) -> str:
smiles = smiles.replace('<', '').replace('>', '')
allowed_chars = set('CNOPSFIBrClcnops()[]=@+-#0123456789')
smiles = ''.join(c for c in smiles if c in allowed_chars)
# Balance parentheses
open_count = smiles.count('(')
close_count = smiles.count(')')
if open_count > close_count:
smiles += ')' * (open_count - close_count)
elif close_count > open_count:
smiles = '(' * (close_count - open_count) + smiles
# Replace invalid double bonds
smiles = smiles.replace('==', '=')
# Attempt to close unclosed rings
for i in range(1, 10):
if smiles.count(str(i)) % 2 != 0:
smiles += str(i)
return smiles
def validate_and_correct_smiles(smiles: str) -> Tuple[bool, str]:
mol = Chem.MolFromSmiles(smiles)
if mol is not None:
try:
Chem.SanitizeMol(mol)
return True, Chem.MolToSmiles(mol, isomericSmiles=True)
except:
pass
return False, smiles
# Function to analyze molecules
def analyze_molecules(smiles_list: List[str], training_smiles_set: set) -> Dict:
results = {
'total': len(smiles_list),
'valid': 0,
'invalid': 0,
'unique': 0,
'corrected': 0,
'novel': 0,
'valid_properties': [],
'novel_properties': [],
'invalid_smiles': []
}
unique_smiles = set()
novel_smiles = set()
for smiles in smiles_list:
processed_smiles = enhanced_post_process_smiles(smiles)
is_valid, corrected_smiles = validate_and_correct_smiles(processed_smiles)
if is_valid:
results['valid'] += 1
unique_smiles.add(corrected_smiles)
if corrected_smiles != processed_smiles:
results['corrected'] += 1
mol = Chem.MolFromSmiles(corrected_smiles)
if mol:
props = {
'smiles': corrected_smiles,
'MolWt': Descriptors.ExactMolWt(mol),
'LogP': Descriptors.MolLogP(mol),
'NumHDonors': Descriptors.NumHDonors(mol),
'NumHAcceptors': Descriptors.NumHAcceptors(mol)
}
if corrected_smiles not in training_smiles_set:
novel_smiles.add(corrected_smiles)
results['novel'] += 1
results['novel_properties'].append(props)
else:
results['valid_properties'].append(props)
else:
results['invalid'] += 1
results['invalid_smiles'].append(smiles)
results['unique'] = len(unique_smiles)
return results
# Function to visualize molecules
def visualize_molecules(smiles_list: List[str], n: int = 5) -> Optional[Image.Image]:
valid_mols = []
for smiles in smiles_list:
smiles = smiles.strip().strip('<>').strip()
if not smiles:
continue
try:
mol = Chem.MolFromSmiles(smiles)
if mol is not None:
valid_mols.append(mol)
if len(valid_mols) == n:
break
except Exception:
continue
if not valid_mols:
return None
try:
img = Draw.MolsToGridImage(
valid_mols,
molsPerRow=min(3, len(valid_mols)),
subImgSize=(200, 200),
legends=[f"Mol {i+1}" for i in range(len(valid_mols))]
)
return img
except Exception:
return None
# GCN and GIN model definitions
class GCN(torch.nn.Module):
"""Graph Convolutional Network class with 3 convolutional layers and a linear layer"""
def __init__(self, dim_h):
"""init method for GCN
Args:
dim_h (int): the dimension of hidden layers
"""
super().__init__()
self.conv1 = GCNConv(11, dim_h)
self.conv2 = GCNConv(dim_h, dim_h)
self.conv3 = GCNConv(dim_h, dim_h)
self.lin = torch.nn.Linear(dim_h, 1)
def forward(self, data):
e = data.edge_index
x = data.x
x = self.conv1(x, e)
x = x.relu()
x = self.conv2(x, e)
x = x.relu()
x = self.conv3(x, e)
x = global_mean_pool(x, data.batch)
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin(x)
return x
class GIN(torch.nn.Module):
"""Graph Isomorphism Network class with 3 GINConv layers and 2 linear layers"""
def __init__(self, dim_h):
"""Initializing GIN class
Args:
dim_h (int): the dimension of hidden layers
"""
super(GIN, self).__init__()
nn1 = Sequential(Linear(11, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
self.conv1 = GINConv(nn1)
nn2 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
self.conv2 = GINConv(nn2)
nn3 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
self.conv3 = GINConv(nn3)
self.lin1 = Linear(dim_h, dim_h)
self.lin2 = Linear(dim_h, 1)
def forward(self, data):
x = data.x
edge_index = data.edge_index
batch = data.batch
# Node embeddings
h = self.conv1(x, edge_index)
h = h.relu()
h = self.conv2(h, edge_index)
h = h.relu()
h = self.conv3(h, edge_index)
# Graph-level readout
h = global_add_pool(h, batch)
h = self.lin1(h)
h = h.relu()
h = F.dropout(h, p=0.5, training=self.training)
h = self.lin2(h)
return h
# Function to load GNN models
@st.cache_resource
def load_gnn_models(device):
# Load GCN model
gcn_model = GCN(dim_h=128)
gcn_model.load_state_dict(torch.load("GCN_model.pth", map_location=device))
gcn_model.to(device)
gcn_model.eval()
# Load GIN model
gin_model = GIN(dim_h=64)
gin_model.load_state_dict(torch.load("GIN_model.pth", map_location=device))
gin_model.to(device)
gin_model.eval()
return gcn_model, gin_model
# Function to load normalization parameters
@st.cache_resource
def load_data_norm(device):
data_norm = torch.load('data_norm.pth', map_location=device)
data_mean = data_norm['mean']
data_std = data_norm['std']
return data_mean, data_std
# Function to convert SMILES to Data object
def smiles_to_data(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
atoms = mol.GetAtoms()
num_atoms = len(atoms)
atom_type_list = ['H', 'C', 'N', 'O', 'F']
hybridization_list = [Chem.rdchem.HybridizationType.SP, Chem.rdchem.HybridizationType.SP2, Chem.rdchem.HybridizationType.SP3]
x = []
for atom in atoms:
atom_type = atom.GetSymbol()
atom_type_feature = [int(atom_type == s) for s in atom_type_list] # 5 features
# Atom degree (scalar between 0 and 4)
degree = atom.GetDegree()
degree_feature = [degree / 4] # Normalize degree to [0,1] # 1 feature
# Formal charge
formal_charge = atom.GetFormalCharge()
formal_charge_feature = [formal_charge / 4] # Assume max formal charge is 4 # 1 feature
# Aromaticity
is_aromatic = atom.GetIsAromatic()
aromatic_feature = [int(is_aromatic)] # 1 feature
# Hybridization
hybridization = atom.GetHybridization()
hybridization_feature = [int(hybridization == hyb) for hyb in hybridization_list] # 3 features
# Total features: 5 + 1 +1 +1 +3 = 11
atom_feature = atom_type_feature + degree_feature + formal_charge_feature + aromatic_feature + hybridization_feature
x.append(atom_feature)
x = torch.tensor(x, dtype=torch.float)
# Build edge indices
edge_index = []
for bond in mol.GetBonds():
i = bond.GetBeginAtomIdx()
j = bond.GetEndAtomIdx()
edge_index.append([i, j])
edge_index.append([j, i]) # Since it's undirected
edge_index = torch.tensor(edge_index, dtype=torch.long).t().contiguous()
# Build batch tensor (since batch size is 1)
batch = torch.zeros(num_atoms, dtype=torch.long)
# Build Data object
data = Data(x=x, edge_index=edge_index, batch=batch)
return data
# Streamlit app
def main():
st.set_page_config(
page_title="π§ͺ Molecule Generator and Property Predictor",
page_icon="π§ͺ",
layout="wide",
initial_sidebar_state="expanded",
)
# Main Title and Description
st.title("π§ͺ Molecular Generation and Analysis using VAE and GNN")
st.markdown("""
SMILES (Simplified Molecular Input Line Entry System) is a widely-used notation that encodes chemical structures into short, linear strings of characters.
This representation allows for the easy storage, transmission, and manipulation of molecular information in computational applications.
This application allows you to generate novel molecular SMILES structures using a Variational Autoencoder (VAE) model trained on the QM9 dataset.
You can also predict molecular properties using Graph Neural Network (GNN) models (GCN and GIN).
""")
# Initialize session state variables
if 'analysis' not in st.session_state:
st.session_state.analysis = None
if 'generated_smiles' not in st.session_state:
st.session_state.generated_smiles = []
if 'vae_generated' not in st.session_state:
st.session_state.vae_generated = False
# Sidebar configuration
st.sidebar.title("π§ Configuration")
st.sidebar.markdown("Adjust the settings below to generate molecules or predict properties.")
# Load training data and canonicalize SMILES
@st.cache_data
def load_training_data():
df = pd.read_csv("qm9.csv")
smiles_list_raw = df['smiles'].tolist()
# Canonicalize SMILES for accurate comparison
smiles_list = [Chem.MolToSmiles(Chem.MolFromSmiles(s), isomericSmiles=True) for s in smiles_list_raw]
return set(smiles_list)
training_smiles_set = load_training_data()
# Device selection
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Model selection
st.sidebar.title("π Model Selection")
model_option = st.sidebar.selectbox("Choose a functionality", ("Generate Molecules (VAE)", "Predict Property (GNN)"))
if model_option == "Generate Molecules (VAE)":
# Number of samples
num_samples = st.sidebar.slider("Number of Molecules to Generate", min_value=5, max_value=500, value=50, step=5)
# Random seed
seed = st.sidebar.number_input("Random Seed", value=42, step=1)
torch.manual_seed(seed)
np.random.seed(seed)
if st.sidebar.button("π Generate Molecules"):
with st.spinner("Generating molecules..."):
# Load VAE model
model, vocab = load_vae_model(device)
generated_smiles = generate_smiles_vae(model, vocab, num_samples=num_samples)
# Analyze molecules
analysis = analyze_molecules(generated_smiles, training_smiles_set)
# Store results in session state
st.session_state.generated_smiles = generated_smiles
st.session_state.analysis = analysis
st.session_state.vae_generated = True
# Display summary
st.success("β
Molecule generation completed!")
st.subheader("Summary of Generated Molecules")
col1, col2, col3, col4 = st.columns(4)
col1.metric("Total Generated", analysis['total'])
col2.metric("Valid Molecules", f"{analysis['valid']} ({(analysis['valid']/analysis['total'])*100:.2f}%)")
col3.metric("Unique Molecules", f"{analysis['unique']} ({(analysis['unique']/analysis['total'])*100:.2f}%)")
col4.metric("Corrected Molecules", f"{analysis['corrected']} ({(analysis['corrected']/analysis['total'])*100:.2f}%)")
col1, col2 = st.columns(2)
col1.metric("Novel Molecules", f"{analysis['novel']} ({(analysis['novel']/analysis['total'])*100:.2f}%)")
col2.metric("Invalid Molecules", f"{analysis['invalid']} ({(analysis['invalid']/analysis['total'])*100:.2f}%)")
# Display properties
if analysis['valid_properties'] or analysis['novel_properties']:
st.subheader("Properties of Generated Molecules")
tab1, tab2 = st.tabs(["β
Valid Molecules", "π Novel Molecules"])
with tab1:
if analysis['valid_properties']:
df_valid = pd.DataFrame(analysis['valid_properties'])
st.dataframe(df_valid)
# Visualize valid molecules (limit to 9 for performance)
st.subheader("Sample Valid Molecules")
mol_image_valid = visualize_molecules([prop['smiles'] for prop in analysis['valid_properties']], n=9)
if mol_image_valid:
st.image(mol_image_valid)
else:
st.write("No valid molecules to display.")
else:
st.write("No valid molecules found.")
with tab2:
if analysis['novel_properties']:
df_novel = pd.DataFrame(analysis['novel_properties'])
st.dataframe(df_novel)
# Visualize novel molecules (limit to 9 for performance)
st.subheader("Sample Novel Molecules")
mol_image_novel = visualize_molecules([prop['smiles'] for prop in analysis['novel_properties']], n=9)
if mol_image_novel:
st.image(mol_image_novel)
else:
st.write("No novel molecules to display.")
else:
st.write("No novel molecules found.")
# Property distributions
st.subheader("Property Distributions")
fig, axs = plt.subplots(2, 2, figsize=(14, 10))
if analysis['valid_properties']:
sns.histplot(df_valid['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='skyblue', label='Valid')
if analysis['novel_properties']:
sns.histplot(df_novel['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='orange', label='Novel')
axs[0, 0].set_title('Molecular Weight Distribution')
axs[0, 0].legend()
if analysis['valid_properties']:
sns.histplot(df_valid['LogP'], bins=20, ax=axs[0, 1], kde=True, color='skyblue', label='Valid')
if analysis['novel_properties']:
sns.histplot(df_novel['LogP'], bins=20, ax=axs[0, 1], kde=True, color='orange', label='Novel')
axs[0, 1].set_title('LogP Distribution')
axs[0, 1].legend()
if analysis['valid_properties']:
sns.histplot(df_valid['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(),
df_novel['NumHDonors'].max()) + 2),
ax=axs[1, 0], kde=False, color='skyblue', label='Valid')
if analysis['novel_properties']:
sns.histplot(df_novel['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(),
df_novel['NumHDonors'].max()) + 2),
ax=axs[1, 0], kde=False, color='orange', label='Novel')
axs[1, 0].set_title('Number of H Donors')
axs[1, 0].legend()
if analysis['valid_properties']:
sns.histplot(df_valid['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(),
df_novel['NumHAcceptors'].max()) + 2),
ax=axs[1, 1], kde=False, color='skyblue', label='Valid')
if analysis['novel_properties']:
sns.histplot(df_novel['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(),
df_novel['NumHAcceptors'].max()) + 2),
ax=axs[1, 1], kde=False, color='orange', label='Novel')
axs[1, 1].set_title('Number of H Acceptors')
axs[1, 1].legend()
plt.tight_layout()
st.pyplot(fig)
# Download options
csv_valid = df_valid.to_csv(index=False).encode('utf-8')
csv_novel = df_novel.to_csv(index=False).encode('utf-8')
col1, col2 = st.columns(2)
with col1:
st.download_button(
label="πΎ Download Valid Molecules CSV",
data=csv_valid,
file_name='valid_molecules.csv',
mime='text/csv'
)
with col2:
st.download_button(
label="πΎ Download Novel Molecules CSV",
data=csv_novel,
file_name='novel_molecules.csv',
mime='text/csv'
)
else:
st.warning("No valid or novel molecules were generated.")
elif model_option == "Predict Property (GNN)":
# Load GNN models
with st.spinner("Loading GNN models..."):
gcn_model, gin_model = load_gnn_models(device)
# Load normalization parameters
data_mean, data_std = load_data_norm(device)
# GNN Model selection
gnn_model_option = st.sidebar.selectbox("Choose a GNN model", ("GCN", "GIN"))
st.subheader("π Predict Molecular Property using GNN")
st.markdown("""
Input a SMILES string to predict the dipole moment using the selected GNN model.
""")
# User inputs a SMILES string
user_smiles = st.text_input("Enter a SMILES string for property prediction:", "")
if user_smiles:
data = smiles_to_data(user_smiles)
if data:
data = data.to(device)
if gnn_model_option == "GCN":
prediction = gcn_model(data)
prediction = prediction.item()
elif gnn_model_option == "GIN":
prediction = gin_model(data)
prediction = prediction.item()
# Unnormalize the prediction
prediction = prediction * data_std.item() + data_mean.item()
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}")
# Display molecule
mol = Chem.MolFromSmiles(user_smiles)
if mol:
st.subheader("Molecular Structure")
st.image(Draw.MolToImage(mol, size=(300, 300)))
else:
st.error("β Invalid SMILES string.")
st.markdown("---")
st.markdown("### Or select a molecule from the generated molecules (if any).")
# Check if molecules have been generated
if st.session_state.vae_generated and st.session_state.analysis is not None:
# Combine valid and novel properties
all_properties = st.session_state.analysis['valid_properties'] + st.session_state.analysis['novel_properties']
if all_properties:
smiles_options = [prop['smiles'] for prop in all_properties]
selected_smiles = st.selectbox("Select a molecule", smiles_options)
if selected_smiles:
data = smiles_to_data(selected_smiles)
if data:
data = data.to(device)
if gnn_model_option == "GCN":
prediction = gcn_model(data)
prediction = prediction.item()
elif gnn_model_option == "GIN":
prediction = gin_model(data)
prediction = prediction.item()
# Unnormalize the prediction
prediction = prediction * data_std.item() + data_mean.item()
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}")
# Display molecule
mol = Chem.MolFromSmiles(selected_smiles)
if mol:
st.subheader("Molecular Structure")
st.image(Draw.MolToImage(mol, size=(300, 300)))
else:
st.error("β Invalid SMILES string.")
else:
st.info("π No valid or novel molecules available.")
else:
st.info("π No generated molecules available. Generate molecules using the VAE first.")
# About section
st.sidebar.title("βΉοΈ About")
st.sidebar.info("""
**Molecule Generator and Property Predictor App**
This app uses a Variational Autoencoder (VAE) model and Graph Neural Networks (GNNs) to generate novel molecular structures and predict molecular properties.
- **Developed by**: Arjun, Kaustubh, and Nachiket
- **Hugging Face Repository**: https://huggingface.co/spaces/Raykarr/SMILES_Generation_and_Prediction
""")
# Hide Streamlit footer and header
hide_streamlit_style = """
<style>
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Run the app
if __name__ == "__main__":
main()
|