Upload 11 files
Browse files- .gitattributes +1 -0
- GCN_final_model.pth +3 -0
- GCN_model.pth +3 -0
- GIN_final_model.pth +3 -0
- GIN_model.pth +3 -0
- app.py +680 -0
- data_norm.pth +3 -0
- gan_mol_dict.pth +3 -0
- qm9.csv +3 -0
- requirements.txt +14 -0
- vae_model.pth +3 -0
- vae_vocab.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
qm9.csv filter=lfs diff=lfs merge=lfs -text
|
GCN_final_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33163e1500e271e15a4d815475329b732598b081b1fedf2ca4dc12afb39e63af
|
3 |
+
size 142176
|
GCN_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:015533d8925e17077100a7dadccd3363e9208cc11c544aec398786089f0eddd2
|
3 |
+
size 142104
|
GIN_final_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a45333977c150f0068b4221fefcbab0fd75502ebefb4df5269561de3ee4508b
|
3 |
+
size 117472
|
GIN_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18fb6277f2001e1b2b6b32c4395d89d793fa7de81107843dc3714408784de8f9
|
3 |
+
size 117244
|
app.py
ADDED
@@ -0,0 +1,680 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import pickle
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
from typing import List, Dict, Tuple, Optional
|
10 |
+
|
11 |
+
# RDKit for molecule handling
|
12 |
+
from rdkit import Chem
|
13 |
+
from rdkit.Chem import Draw, Descriptors
|
14 |
+
from rdkit import RDLogger
|
15 |
+
RDLogger.DisableLog('rdApp.*')
|
16 |
+
|
17 |
+
# Visualization libraries
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
import seaborn as sns
|
20 |
+
|
21 |
+
# For generating images in Streamlit
|
22 |
+
from PIL import Image
|
23 |
+
|
24 |
+
# Suppress warnings in RDKit
|
25 |
+
import warnings
|
26 |
+
warnings.filterwarnings('ignore')
|
27 |
+
|
28 |
+
# Set Seaborn style
|
29 |
+
sns.set_style('whitegrid')
|
30 |
+
|
31 |
+
# Additional imports for GNN
|
32 |
+
import torch.nn.functional as F
|
33 |
+
from torch.nn import Linear, Sequential, BatchNorm1d, ReLU
|
34 |
+
|
35 |
+
from torch_geometric.data import Data
|
36 |
+
from torch_geometric.nn import GCNConv, GINConv
|
37 |
+
from torch_geometric.nn import global_mean_pool, global_add_pool
|
38 |
+
|
39 |
+
# Function to load the VAE model
|
40 |
+
@st.cache_resource
|
41 |
+
def load_vae_model(device):
|
42 |
+
# Load the vocabulary
|
43 |
+
with open('vae_vocab.pkl', 'rb') as f:
|
44 |
+
vocab = pickle.load(f)
|
45 |
+
vocab_size = len(vocab)
|
46 |
+
|
47 |
+
# Initialize the model with the same parameters
|
48 |
+
hidden_dim = 256 # Ensure this matches your trained model
|
49 |
+
latent_dim = 64 # Ensure this matches your trained model
|
50 |
+
|
51 |
+
# Define the VAE class (same as in your training script)
|
52 |
+
class VAE(nn.Module):
|
53 |
+
def __init__(self, vocab_size: int, hidden_dim: int, latent_dim: int):
|
54 |
+
super(VAE, self).__init__()
|
55 |
+
self.vocab_size = vocab_size
|
56 |
+
self.hidden_dim = hidden_dim
|
57 |
+
self.latent_dim = latent_dim
|
58 |
+
|
59 |
+
self.encoder = nn.GRU(vocab_size, hidden_dim, batch_first=True)
|
60 |
+
self.fc_mu = nn.Linear(hidden_dim, latent_dim)
|
61 |
+
self.fc_logvar = nn.Linear(hidden_dim, latent_dim)
|
62 |
+
|
63 |
+
self.decoder = nn.GRU(vocab_size + latent_dim, hidden_dim, batch_first=True)
|
64 |
+
self.fc_output = nn.Linear(hidden_dim, vocab_size)
|
65 |
+
|
66 |
+
def encode(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
67 |
+
_, h = self.encoder(x)
|
68 |
+
h = h.squeeze(0)
|
69 |
+
return self.fc_mu(h), self.fc_logvar(h)
|
70 |
+
|
71 |
+
def reparameterize(self, mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
|
72 |
+
std = torch.exp(0.5 * logvar)
|
73 |
+
eps = torch.randn_like(std)
|
74 |
+
return mu + eps * std
|
75 |
+
|
76 |
+
def decode(self, z: torch.Tensor, max_length: int) -> torch.Tensor:
|
77 |
+
batch_size = z.size(0)
|
78 |
+
h = torch.zeros(1, batch_size, self.hidden_dim).to(z.device)
|
79 |
+
x = torch.zeros(batch_size, 1, self.vocab_size).to(z.device)
|
80 |
+
x[:, 0, vocab['<']] = 1 # Start token
|
81 |
+
outputs = []
|
82 |
+
|
83 |
+
for _ in range(max_length):
|
84 |
+
z_input = z.unsqueeze(1)
|
85 |
+
decoder_input = torch.cat([x, z_input], dim=2)
|
86 |
+
output, h = self.decoder(decoder_input, h)
|
87 |
+
output = self.fc_output(output)
|
88 |
+
outputs.append(output)
|
89 |
+
x = torch.softmax(output, dim=-1)
|
90 |
+
|
91 |
+
return torch.cat(outputs, dim=1)
|
92 |
+
|
93 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
94 |
+
mu, logvar = self.encode(x)
|
95 |
+
z = self.reparameterize(mu, logvar)
|
96 |
+
return self.decode(z, x.size(1)), mu, logvar
|
97 |
+
|
98 |
+
model = VAE(vocab_size, hidden_dim, latent_dim)
|
99 |
+
model.load_state_dict(torch.load('vae_model.pth', map_location=device))
|
100 |
+
model.to(device)
|
101 |
+
model.eval()
|
102 |
+
return model, vocab
|
103 |
+
|
104 |
+
# Function to generate molecules using VAE
|
105 |
+
def generate_smiles_vae(model, vocab, num_samples=10, max_length=100):
|
106 |
+
model.eval()
|
107 |
+
inv_vocab = {v: k for k, v in vocab.items()}
|
108 |
+
generated_smiles = []
|
109 |
+
device = next(model.parameters()).device
|
110 |
+
|
111 |
+
with torch.no_grad():
|
112 |
+
for _ in range(num_samples):
|
113 |
+
z = torch.randn(1, model.latent_dim).to(device)
|
114 |
+
x = torch.zeros(1, 1, model.vocab_size).to(device)
|
115 |
+
x[0, 0, vocab['<']] = 1
|
116 |
+
h = torch.zeros(1, 1, model.hidden_dim).to(device)
|
117 |
+
|
118 |
+
smiles = ''
|
119 |
+
for _ in range(max_length):
|
120 |
+
z_input = z.unsqueeze(1)
|
121 |
+
decoder_input = torch.cat([x, z_input], dim=2)
|
122 |
+
output, h = model.decoder(decoder_input, h)
|
123 |
+
output = model.fc_output(output)
|
124 |
+
|
125 |
+
probs = torch.softmax(output.squeeze(0), dim=-1)
|
126 |
+
next_char = torch.multinomial(probs, 1).item()
|
127 |
+
|
128 |
+
if next_char == vocab['>']:
|
129 |
+
break
|
130 |
+
|
131 |
+
smiles += inv_vocab.get(next_char, '')
|
132 |
+
x = torch.zeros(1, 1, model.vocab_size).to(device)
|
133 |
+
x[0, 0, next_char] = 1
|
134 |
+
|
135 |
+
generated_smiles.append(smiles)
|
136 |
+
|
137 |
+
return generated_smiles
|
138 |
+
|
139 |
+
# Function to post-process and validate SMILES strings
|
140 |
+
def enhanced_post_process_smiles(smiles: str) -> str:
|
141 |
+
smiles = smiles.replace('<', '').replace('>', '')
|
142 |
+
allowed_chars = set('CNOPSFIBrClcnops()[]=@+-#0123456789')
|
143 |
+
smiles = ''.join(c for c in smiles if c in allowed_chars)
|
144 |
+
|
145 |
+
# Balance parentheses
|
146 |
+
open_count = smiles.count('(')
|
147 |
+
close_count = smiles.count(')')
|
148 |
+
if open_count > close_count:
|
149 |
+
smiles += ')' * (open_count - close_count)
|
150 |
+
elif close_count > open_count:
|
151 |
+
smiles = '(' * (close_count - open_count) + smiles
|
152 |
+
|
153 |
+
# Replace invalid double bonds
|
154 |
+
smiles = smiles.replace('==', '=')
|
155 |
+
|
156 |
+
# Attempt to close unclosed rings
|
157 |
+
for i in range(1, 10):
|
158 |
+
if smiles.count(str(i)) % 2 != 0:
|
159 |
+
smiles += str(i)
|
160 |
+
|
161 |
+
return smiles
|
162 |
+
|
163 |
+
def validate_and_correct_smiles(smiles: str) -> Tuple[bool, str]:
|
164 |
+
mol = Chem.MolFromSmiles(smiles)
|
165 |
+
if mol is not None:
|
166 |
+
try:
|
167 |
+
Chem.SanitizeMol(mol)
|
168 |
+
return True, Chem.MolToSmiles(mol, isomericSmiles=True)
|
169 |
+
except:
|
170 |
+
pass
|
171 |
+
return False, smiles
|
172 |
+
|
173 |
+
# Function to analyze molecules
|
174 |
+
def analyze_molecules(smiles_list: List[str], training_smiles_set: set) -> Dict:
|
175 |
+
results = {
|
176 |
+
'total': len(smiles_list),
|
177 |
+
'valid': 0,
|
178 |
+
'invalid': 0,
|
179 |
+
'unique': 0,
|
180 |
+
'corrected': 0,
|
181 |
+
'novel': 0,
|
182 |
+
'valid_properties': [],
|
183 |
+
'novel_properties': [],
|
184 |
+
'invalid_smiles': []
|
185 |
+
}
|
186 |
+
|
187 |
+
unique_smiles = set()
|
188 |
+
novel_smiles = set()
|
189 |
+
|
190 |
+
for smiles in smiles_list:
|
191 |
+
processed_smiles = enhanced_post_process_smiles(smiles)
|
192 |
+
is_valid, corrected_smiles = validate_and_correct_smiles(processed_smiles)
|
193 |
+
|
194 |
+
if is_valid:
|
195 |
+
results['valid'] += 1
|
196 |
+
unique_smiles.add(corrected_smiles)
|
197 |
+
if corrected_smiles != processed_smiles:
|
198 |
+
results['corrected'] += 1
|
199 |
+
|
200 |
+
mol = Chem.MolFromSmiles(corrected_smiles)
|
201 |
+
if mol:
|
202 |
+
props = {
|
203 |
+
'smiles': corrected_smiles,
|
204 |
+
'MolWt': Descriptors.ExactMolWt(mol),
|
205 |
+
'LogP': Descriptors.MolLogP(mol),
|
206 |
+
'NumHDonors': Descriptors.NumHDonors(mol),
|
207 |
+
'NumHAcceptors': Descriptors.NumHAcceptors(mol)
|
208 |
+
}
|
209 |
+
|
210 |
+
if corrected_smiles not in training_smiles_set:
|
211 |
+
novel_smiles.add(corrected_smiles)
|
212 |
+
results['novel'] += 1
|
213 |
+
results['novel_properties'].append(props)
|
214 |
+
else:
|
215 |
+
results['valid_properties'].append(props)
|
216 |
+
else:
|
217 |
+
results['invalid'] += 1
|
218 |
+
results['invalid_smiles'].append(smiles)
|
219 |
+
|
220 |
+
results['unique'] = len(unique_smiles)
|
221 |
+
return results
|
222 |
+
|
223 |
+
# Function to visualize molecules
|
224 |
+
def visualize_molecules(smiles_list: List[str], n: int = 5) -> Optional[Image.Image]:
|
225 |
+
valid_mols = []
|
226 |
+
for smiles in smiles_list:
|
227 |
+
smiles = smiles.strip().strip('<>').strip()
|
228 |
+
if not smiles:
|
229 |
+
continue
|
230 |
+
try:
|
231 |
+
mol = Chem.MolFromSmiles(smiles)
|
232 |
+
if mol is not None:
|
233 |
+
valid_mols.append(mol)
|
234 |
+
if len(valid_mols) == n:
|
235 |
+
break
|
236 |
+
except Exception:
|
237 |
+
continue
|
238 |
+
|
239 |
+
if not valid_mols:
|
240 |
+
return None
|
241 |
+
|
242 |
+
try:
|
243 |
+
img = Draw.MolsToGridImage(
|
244 |
+
valid_mols,
|
245 |
+
molsPerRow=min(3, len(valid_mols)),
|
246 |
+
subImgSize=(200, 200),
|
247 |
+
legends=[f"Mol {i+1}" for i in range(len(valid_mols))]
|
248 |
+
)
|
249 |
+
return img
|
250 |
+
except Exception:
|
251 |
+
return None
|
252 |
+
|
253 |
+
# GCN and GIN model definitions
|
254 |
+
class GCN(torch.nn.Module):
|
255 |
+
"""Graph Convolutional Network class with 3 convolutional layers and a linear layer"""
|
256 |
+
|
257 |
+
def __init__(self, dim_h):
|
258 |
+
"""init method for GCN
|
259 |
+
|
260 |
+
Args:
|
261 |
+
dim_h (int): the dimension of hidden layers
|
262 |
+
"""
|
263 |
+
super().__init__()
|
264 |
+
self.conv1 = GCNConv(11, dim_h)
|
265 |
+
self.conv2 = GCNConv(dim_h, dim_h)
|
266 |
+
self.conv3 = GCNConv(dim_h, dim_h)
|
267 |
+
self.lin = torch.nn.Linear(dim_h, 1)
|
268 |
+
|
269 |
+
def forward(self, data):
|
270 |
+
e = data.edge_index
|
271 |
+
x = data.x
|
272 |
+
|
273 |
+
x = self.conv1(x, e)
|
274 |
+
x = x.relu()
|
275 |
+
x = self.conv2(x, e)
|
276 |
+
x = x.relu()
|
277 |
+
x = self.conv3(x, e)
|
278 |
+
x = global_mean_pool(x, data.batch)
|
279 |
+
|
280 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
281 |
+
x = self.lin(x)
|
282 |
+
|
283 |
+
return x
|
284 |
+
|
285 |
+
class GIN(torch.nn.Module):
|
286 |
+
"""Graph Isomorphism Network class with 3 GINConv layers and 2 linear layers"""
|
287 |
+
|
288 |
+
def __init__(self, dim_h):
|
289 |
+
"""Initializing GIN class
|
290 |
+
|
291 |
+
Args:
|
292 |
+
dim_h (int): the dimension of hidden layers
|
293 |
+
"""
|
294 |
+
super(GIN, self).__init__()
|
295 |
+
nn1 = Sequential(Linear(11, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
|
296 |
+
self.conv1 = GINConv(nn1)
|
297 |
+
nn2 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
|
298 |
+
self.conv2 = GINConv(nn2)
|
299 |
+
nn3 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
|
300 |
+
self.conv3 = GINConv(nn3)
|
301 |
+
self.lin1 = Linear(dim_h, dim_h)
|
302 |
+
self.lin2 = Linear(dim_h, 1)
|
303 |
+
|
304 |
+
def forward(self, data):
|
305 |
+
x = data.x
|
306 |
+
edge_index = data.edge_index
|
307 |
+
batch = data.batch
|
308 |
+
|
309 |
+
# Node embeddings
|
310 |
+
h = self.conv1(x, edge_index)
|
311 |
+
h = h.relu()
|
312 |
+
h = self.conv2(h, edge_index)
|
313 |
+
h = h.relu()
|
314 |
+
h = self.conv3(h, edge_index)
|
315 |
+
|
316 |
+
# Graph-level readout
|
317 |
+
h = global_add_pool(h, batch)
|
318 |
+
|
319 |
+
h = self.lin1(h)
|
320 |
+
h = h.relu()
|
321 |
+
h = F.dropout(h, p=0.5, training=self.training)
|
322 |
+
h = self.lin2(h)
|
323 |
+
|
324 |
+
return h
|
325 |
+
|
326 |
+
# Function to load GNN models
|
327 |
+
@st.cache_resource
|
328 |
+
def load_gnn_models(device):
|
329 |
+
# Load GCN model
|
330 |
+
gcn_model = GCN(dim_h=128)
|
331 |
+
gcn_model.load_state_dict(torch.load("GCN_model.pth", map_location=device))
|
332 |
+
gcn_model.to(device)
|
333 |
+
gcn_model.eval()
|
334 |
+
|
335 |
+
# Load GIN model
|
336 |
+
gin_model = GIN(dim_h=64)
|
337 |
+
gin_model.load_state_dict(torch.load("GIN_model.pth", map_location=device))
|
338 |
+
gin_model.to(device)
|
339 |
+
gin_model.eval()
|
340 |
+
|
341 |
+
return gcn_model, gin_model
|
342 |
+
|
343 |
+
# Function to load normalization parameters
|
344 |
+
@st.cache_resource
|
345 |
+
def load_data_norm(device):
|
346 |
+
data_norm = torch.load('data_norm.pth', map_location=device)
|
347 |
+
data_mean = data_norm['mean']
|
348 |
+
data_std = data_norm['std']
|
349 |
+
return data_mean, data_std
|
350 |
+
|
351 |
+
# Function to convert SMILES to Data object
|
352 |
+
def smiles_to_data(smiles):
|
353 |
+
mol = Chem.MolFromSmiles(smiles)
|
354 |
+
if mol is None:
|
355 |
+
return None
|
356 |
+
|
357 |
+
atoms = mol.GetAtoms()
|
358 |
+
num_atoms = len(atoms)
|
359 |
+
|
360 |
+
atom_type_list = ['H', 'C', 'N', 'O', 'F']
|
361 |
+
hybridization_list = [Chem.rdchem.HybridizationType.SP, Chem.rdchem.HybridizationType.SP2, Chem.rdchem.HybridizationType.SP3]
|
362 |
+
|
363 |
+
x = []
|
364 |
+
for atom in atoms:
|
365 |
+
atom_type = atom.GetSymbol()
|
366 |
+
atom_type_feature = [int(atom_type == s) for s in atom_type_list] # 5 features
|
367 |
+
|
368 |
+
# Atom degree (scalar between 0 and 4)
|
369 |
+
degree = atom.GetDegree()
|
370 |
+
degree_feature = [degree / 4] # Normalize degree to [0,1] # 1 feature
|
371 |
+
|
372 |
+
# Formal charge
|
373 |
+
formal_charge = atom.GetFormalCharge()
|
374 |
+
formal_charge_feature = [formal_charge / 4] # Assume max formal charge is 4 # 1 feature
|
375 |
+
|
376 |
+
# Aromaticity
|
377 |
+
is_aromatic = atom.GetIsAromatic()
|
378 |
+
aromatic_feature = [int(is_aromatic)] # 1 feature
|
379 |
+
|
380 |
+
# Hybridization
|
381 |
+
hybridization = atom.GetHybridization()
|
382 |
+
hybridization_feature = [int(hybridization == hyb) for hyb in hybridization_list] # 3 features
|
383 |
+
|
384 |
+
# Total features: 5 + 1 +1 +1 +3 = 11
|
385 |
+
atom_feature = atom_type_feature + degree_feature + formal_charge_feature + aromatic_feature + hybridization_feature
|
386 |
+
x.append(atom_feature)
|
387 |
+
|
388 |
+
x = torch.tensor(x, dtype=torch.float)
|
389 |
+
|
390 |
+
# Build edge indices
|
391 |
+
edge_index = []
|
392 |
+
for bond in mol.GetBonds():
|
393 |
+
i = bond.GetBeginAtomIdx()
|
394 |
+
j = bond.GetEndAtomIdx()
|
395 |
+
edge_index.append([i, j])
|
396 |
+
edge_index.append([j, i]) # Since it's undirected
|
397 |
+
|
398 |
+
edge_index = torch.tensor(edge_index, dtype=torch.long).t().contiguous()
|
399 |
+
|
400 |
+
# Build batch tensor (since batch size is 1)
|
401 |
+
batch = torch.zeros(num_atoms, dtype=torch.long)
|
402 |
+
|
403 |
+
# Build Data object
|
404 |
+
data = Data(x=x, edge_index=edge_index, batch=batch)
|
405 |
+
|
406 |
+
return data
|
407 |
+
|
408 |
+
# Streamlit app
|
409 |
+
def main():
|
410 |
+
st.set_page_config(
|
411 |
+
page_title="π§ͺ Molecule Generator and Property Predictor",
|
412 |
+
page_icon="π§ͺ",
|
413 |
+
layout="wide",
|
414 |
+
initial_sidebar_state="expanded",
|
415 |
+
)
|
416 |
+
|
417 |
+
# Main Title and Description
|
418 |
+
st.title("π§ͺ Molecular Generation and Analysis using VAE and GNN")
|
419 |
+
st.markdown("""
|
420 |
+
This application allows you to generate novel molecular structures using a Variational Autoencoder (VAE) model trained on the QM9 dataset.
|
421 |
+
You can also predict molecular properties using pre-trained Graph Neural Network (GNN) models (GCN and GIN).
|
422 |
+
""")
|
423 |
+
|
424 |
+
# Initialize session state variables
|
425 |
+
if 'analysis' not in st.session_state:
|
426 |
+
st.session_state.analysis = None
|
427 |
+
if 'generated_smiles' not in st.session_state:
|
428 |
+
st.session_state.generated_smiles = []
|
429 |
+
if 'vae_generated' not in st.session_state:
|
430 |
+
st.session_state.vae_generated = False
|
431 |
+
|
432 |
+
# Sidebar configuration
|
433 |
+
st.sidebar.title("π§ Configuration")
|
434 |
+
st.sidebar.markdown("Adjust the settings below to generate molecules or predict properties.")
|
435 |
+
|
436 |
+
# Load training data and canonicalize SMILES
|
437 |
+
@st.cache_data
|
438 |
+
def load_training_data():
|
439 |
+
df = pd.read_csv("qm9.csv")
|
440 |
+
smiles_list_raw = df['smiles'].tolist()
|
441 |
+
# Canonicalize SMILES for accurate comparison
|
442 |
+
smiles_list = [Chem.MolToSmiles(Chem.MolFromSmiles(s), isomericSmiles=True) for s in smiles_list_raw]
|
443 |
+
return set(smiles_list)
|
444 |
+
|
445 |
+
training_smiles_set = load_training_data()
|
446 |
+
|
447 |
+
# Device selection
|
448 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
449 |
+
|
450 |
+
# Model selection
|
451 |
+
st.sidebar.title("π Model Selection")
|
452 |
+
model_option = st.sidebar.selectbox("Choose a functionality", ("Generate Molecules (VAE)", "Predict Property (GNN)"))
|
453 |
+
|
454 |
+
if model_option == "Generate Molecules (VAE)":
|
455 |
+
# Number of samples
|
456 |
+
num_samples = st.sidebar.slider("Number of Molecules to Generate", min_value=5, max_value=500, value=50, step=5)
|
457 |
+
|
458 |
+
# Random seed
|
459 |
+
seed = st.sidebar.number_input("Random Seed", value=42, step=1)
|
460 |
+
torch.manual_seed(seed)
|
461 |
+
np.random.seed(seed)
|
462 |
+
|
463 |
+
if st.sidebar.button("π Generate Molecules"):
|
464 |
+
with st.spinner("Generating molecules..."):
|
465 |
+
# Load VAE model
|
466 |
+
model, vocab = load_vae_model(device)
|
467 |
+
generated_smiles = generate_smiles_vae(model, vocab, num_samples=num_samples)
|
468 |
+
# Analyze molecules
|
469 |
+
analysis = analyze_molecules(generated_smiles, training_smiles_set)
|
470 |
+
# Store results in session state
|
471 |
+
st.session_state.generated_smiles = generated_smiles
|
472 |
+
st.session_state.analysis = analysis
|
473 |
+
st.session_state.vae_generated = True
|
474 |
+
|
475 |
+
# Display summary
|
476 |
+
st.success("β
Molecule generation completed!")
|
477 |
+
st.subheader("Summary of Generated Molecules")
|
478 |
+
col1, col2, col3, col4 = st.columns(4)
|
479 |
+
col1.metric("Total Generated", analysis['total'])
|
480 |
+
col2.metric("Valid Molecules", f"{analysis['valid']} ({(analysis['valid']/analysis['total'])*100:.2f}%)")
|
481 |
+
col3.metric("Unique Molecules", f"{analysis['unique']} ({(analysis['unique']/analysis['total'])*100:.2f}%)")
|
482 |
+
col4.metric("Corrected Molecules", f"{analysis['corrected']} ({(analysis['corrected']/analysis['total'])*100:.2f}%)")
|
483 |
+
|
484 |
+
col1, col2 = st.columns(2)
|
485 |
+
col1.metric("Novel Molecules", f"{analysis['novel']} ({(analysis['novel']/analysis['total'])*100:.2f}%)")
|
486 |
+
col2.metric("Invalid Molecules", f"{analysis['invalid']} ({(analysis['invalid']/analysis['total'])*100:.2f}%)")
|
487 |
+
|
488 |
+
# Display properties
|
489 |
+
if analysis['valid_properties'] or analysis['novel_properties']:
|
490 |
+
st.subheader("Properties of Generated Molecules")
|
491 |
+
|
492 |
+
tab1, tab2 = st.tabs(["β
Valid Molecules", "π Novel Molecules"])
|
493 |
+
with tab1:
|
494 |
+
if analysis['valid_properties']:
|
495 |
+
df_valid = pd.DataFrame(analysis['valid_properties'])
|
496 |
+
st.dataframe(df_valid)
|
497 |
+
# Visualize valid molecules (limit to 9 for performance)
|
498 |
+
st.subheader("Sample Valid Molecules")
|
499 |
+
mol_image_valid = visualize_molecules([prop['smiles'] for prop in analysis['valid_properties']], n=9)
|
500 |
+
if mol_image_valid:
|
501 |
+
st.image(mol_image_valid)
|
502 |
+
else:
|
503 |
+
st.write("No valid molecules to display.")
|
504 |
+
else:
|
505 |
+
st.write("No valid molecules found.")
|
506 |
+
|
507 |
+
with tab2:
|
508 |
+
if analysis['novel_properties']:
|
509 |
+
df_novel = pd.DataFrame(analysis['novel_properties'])
|
510 |
+
st.dataframe(df_novel)
|
511 |
+
# Visualize novel molecules (limit to 9 for performance)
|
512 |
+
st.subheader("Sample Novel Molecules")
|
513 |
+
mol_image_novel = visualize_molecules([prop['smiles'] for prop in analysis['novel_properties']], n=9)
|
514 |
+
if mol_image_novel:
|
515 |
+
st.image(mol_image_novel)
|
516 |
+
else:
|
517 |
+
st.write("No novel molecules to display.")
|
518 |
+
else:
|
519 |
+
st.write("No novel molecules found.")
|
520 |
+
|
521 |
+
# Property distributions
|
522 |
+
st.subheader("Property Distributions")
|
523 |
+
fig, axs = plt.subplots(2, 2, figsize=(14, 10))
|
524 |
+
if analysis['valid_properties']:
|
525 |
+
sns.histplot(df_valid['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='skyblue', label='Valid')
|
526 |
+
if analysis['novel_properties']:
|
527 |
+
sns.histplot(df_novel['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='orange', label='Novel')
|
528 |
+
axs[0, 0].set_title('Molecular Weight Distribution')
|
529 |
+
axs[0, 0].legend()
|
530 |
+
|
531 |
+
if analysis['valid_properties']:
|
532 |
+
sns.histplot(df_valid['LogP'], bins=20, ax=axs[0, 1], kde=True, color='skyblue', label='Valid')
|
533 |
+
if analysis['novel_properties']:
|
534 |
+
sns.histplot(df_novel['LogP'], bins=20, ax=axs[0, 1], kde=True, color='orange', label='Novel')
|
535 |
+
axs[0, 1].set_title('LogP Distribution')
|
536 |
+
axs[0, 1].legend()
|
537 |
+
|
538 |
+
if analysis['valid_properties']:
|
539 |
+
sns.histplot(df_valid['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(),
|
540 |
+
df_novel['NumHDonors'].max()) + 2),
|
541 |
+
ax=axs[1, 0], kde=False, color='skyblue', label='Valid')
|
542 |
+
if analysis['novel_properties']:
|
543 |
+
sns.histplot(df_novel['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(),
|
544 |
+
df_novel['NumHDonors'].max()) + 2),
|
545 |
+
ax=axs[1, 0], kde=False, color='orange', label='Novel')
|
546 |
+
axs[1, 0].set_title('Number of H Donors')
|
547 |
+
axs[1, 0].legend()
|
548 |
+
|
549 |
+
if analysis['valid_properties']:
|
550 |
+
sns.histplot(df_valid['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(),
|
551 |
+
df_novel['NumHAcceptors'].max()) + 2),
|
552 |
+
ax=axs[1, 1], kde=False, color='skyblue', label='Valid')
|
553 |
+
if analysis['novel_properties']:
|
554 |
+
sns.histplot(df_novel['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(),
|
555 |
+
df_novel['NumHAcceptors'].max()) + 2),
|
556 |
+
ax=axs[1, 1], kde=False, color='orange', label='Novel')
|
557 |
+
axs[1, 1].set_title('Number of H Acceptors')
|
558 |
+
axs[1, 1].legend()
|
559 |
+
|
560 |
+
plt.tight_layout()
|
561 |
+
st.pyplot(fig)
|
562 |
+
|
563 |
+
# Download options
|
564 |
+
csv_valid = df_valid.to_csv(index=False).encode('utf-8')
|
565 |
+
csv_novel = df_novel.to_csv(index=False).encode('utf-8')
|
566 |
+
col1, col2 = st.columns(2)
|
567 |
+
with col1:
|
568 |
+
st.download_button(
|
569 |
+
label="πΎ Download Valid Molecules CSV",
|
570 |
+
data=csv_valid,
|
571 |
+
file_name='valid_molecules.csv',
|
572 |
+
mime='text/csv'
|
573 |
+
)
|
574 |
+
with col2:
|
575 |
+
st.download_button(
|
576 |
+
label="πΎ Download Novel Molecules CSV",
|
577 |
+
data=csv_novel,
|
578 |
+
file_name='novel_molecules.csv',
|
579 |
+
mime='text/csv'
|
580 |
+
)
|
581 |
+
else:
|
582 |
+
st.warning("No valid or novel molecules were generated.")
|
583 |
+
|
584 |
+
elif model_option == "Predict Property (GNN)":
|
585 |
+
# Load GNN models
|
586 |
+
with st.spinner("Loading GNN models..."):
|
587 |
+
gcn_model, gin_model = load_gnn_models(device)
|
588 |
+
# Load normalization parameters
|
589 |
+
data_mean, data_std = load_data_norm(device)
|
590 |
+
|
591 |
+
# GNN Model selection
|
592 |
+
gnn_model_option = st.sidebar.selectbox("Choose a GNN model", ("GCN", "GIN"))
|
593 |
+
|
594 |
+
st.subheader("π Predict Molecular Property using GNN")
|
595 |
+
st.markdown("""
|
596 |
+
Input a SMILES string to predict the dipole moment using the selected GNN model.
|
597 |
+
""")
|
598 |
+
|
599 |
+
# User inputs a SMILES string
|
600 |
+
user_smiles = st.text_input("Enter a SMILES string for property prediction:", "")
|
601 |
+
|
602 |
+
if user_smiles:
|
603 |
+
data = smiles_to_data(user_smiles)
|
604 |
+
if data:
|
605 |
+
data = data.to(device)
|
606 |
+
if gnn_model_option == "GCN":
|
607 |
+
prediction = gcn_model(data)
|
608 |
+
prediction = prediction.item()
|
609 |
+
elif gnn_model_option == "GIN":
|
610 |
+
prediction = gin_model(data)
|
611 |
+
prediction = prediction.item()
|
612 |
+
# Unnormalize the prediction
|
613 |
+
prediction = prediction * data_std.item() + data_mean.item()
|
614 |
+
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}")
|
615 |
+
# Display molecule
|
616 |
+
mol = Chem.MolFromSmiles(user_smiles)
|
617 |
+
if mol:
|
618 |
+
st.subheader("Molecular Structure")
|
619 |
+
st.image(Draw.MolToImage(mol, size=(300, 300)))
|
620 |
+
else:
|
621 |
+
st.error("β Invalid SMILES string.")
|
622 |
+
|
623 |
+
st.markdown("---")
|
624 |
+
st.markdown("### Or select a molecule from the generated molecules (if any).")
|
625 |
+
|
626 |
+
# Check if molecules have been generated
|
627 |
+
if st.session_state.vae_generated and st.session_state.analysis is not None:
|
628 |
+
# Combine valid and novel properties
|
629 |
+
all_properties = st.session_state.analysis['valid_properties'] + st.session_state.analysis['novel_properties']
|
630 |
+
if all_properties:
|
631 |
+
smiles_options = [prop['smiles'] for prop in all_properties]
|
632 |
+
selected_smiles = st.selectbox("Select a molecule", smiles_options)
|
633 |
+
if selected_smiles:
|
634 |
+
data = smiles_to_data(selected_smiles)
|
635 |
+
if data:
|
636 |
+
data = data.to(device)
|
637 |
+
if gnn_model_option == "GCN":
|
638 |
+
prediction = gcn_model(data)
|
639 |
+
prediction = prediction.item()
|
640 |
+
elif gnn_model_option == "GIN":
|
641 |
+
prediction = gin_model(data)
|
642 |
+
prediction = prediction.item()
|
643 |
+
# Unnormalize the prediction
|
644 |
+
prediction = prediction * data_std.item() + data_mean.item()
|
645 |
+
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}")
|
646 |
+
# Display molecule
|
647 |
+
mol = Chem.MolFromSmiles(selected_smiles)
|
648 |
+
if mol:
|
649 |
+
st.subheader("Molecular Structure")
|
650 |
+
st.image(Draw.MolToImage(mol, size=(300, 300)))
|
651 |
+
else:
|
652 |
+
st.error("β Invalid SMILES string.")
|
653 |
+
else:
|
654 |
+
st.info("π No valid or novel molecules available.")
|
655 |
+
else:
|
656 |
+
st.info("π No generated molecules available. Generate molecules using the VAE first.")
|
657 |
+
|
658 |
+
# About section
|
659 |
+
st.sidebar.title("βΉοΈ About")
|
660 |
+
st.sidebar.info("""
|
661 |
+
**Molecule Generator and Property Predictor App**
|
662 |
+
|
663 |
+
This app uses a Variational Autoencoder (VAE) model and Graph Neural Networks (GNNs) to generate novel molecular structures and predict molecular properties.
|
664 |
+
|
665 |
+
- **Developed by**: Arjun, Kaustubh, and Nachiket
|
666 |
+
- **Hugging Face Repository**: [Your Hugging Face Repository](https://huggingface.co/YourRepositoryLink)
|
667 |
+
""")
|
668 |
+
|
669 |
+
# Hide Streamlit footer and header
|
670 |
+
hide_streamlit_style = """
|
671 |
+
<style>
|
672 |
+
footer {visibility: hidden;}
|
673 |
+
header {visibility: hidden;}
|
674 |
+
</style>
|
675 |
+
"""
|
676 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
677 |
+
|
678 |
+
# Run the app
|
679 |
+
if __name__ == "__main__":
|
680 |
+
main()
|
data_norm.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d86e7264dc9cf6b98296acc1ac0d1180511bc714f7d5a3336212c27c9df32ff7
|
3 |
+
size 1444
|
gan_mol_dict.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd75fc4b2d59d77b7abfc85d1cbe65c7caff987661a7423db8b8848044c99e7f
|
3 |
+
size 697168
|
qm9.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e668f8c34e4bc392a90d417a50a5eed3b64b842a817a633024bdc054c68ccb4
|
3 |
+
size 29856825
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
torch-scatter
|
5 |
+
torch-sparse
|
6 |
+
torch-cluster
|
7 |
+
torch-spline-conv
|
8 |
+
torch-geometric
|
9 |
+
rdkit-pypi
|
10 |
+
pandas
|
11 |
+
numpy
|
12 |
+
matplotlib
|
13 |
+
seaborn
|
14 |
+
Pillow
|
vae_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60b3c9608612eeebfda8659bc017caeca6a26caebc3fa8b07ee5c9abd8af7f03
|
3 |
+
size 2082136
|
vae_vocab.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a3784f5b486a116e95054673663ef811802663affb4b1180c36f53090cc2f00
|
3 |
+
size 154
|