Upload 11 files
Browse files- .gitattributes +1 -0
- GCN_final_model.pth +3 -0
- GCN_model.pth +3 -0
- GIN_final_model.pth +3 -0
- GIN_model.pth +3 -0
- app.py +680 -0
- data_norm.pth +3 -0
- gan_mol_dict.pth +3 -0
- qm9.csv +3 -0
- requirements.txt +14 -0
- vae_model.pth +3 -0
- vae_vocab.pkl +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
qm9.csv filter=lfs diff=lfs merge=lfs -text
|
GCN_final_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33163e1500e271e15a4d815475329b732598b081b1fedf2ca4dc12afb39e63af
|
| 3 |
+
size 142176
|
GCN_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:015533d8925e17077100a7dadccd3363e9208cc11c544aec398786089f0eddd2
|
| 3 |
+
size 142104
|
GIN_final_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a45333977c150f0068b4221fefcbab0fd75502ebefb4df5269561de3ee4508b
|
| 3 |
+
size 117472
|
GIN_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18fb6277f2001e1b2b6b32c4395d89d793fa7de81107843dc3714408784de8f9
|
| 3 |
+
size 117244
|
app.py
ADDED
|
@@ -0,0 +1,680 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import pickle
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from typing import List, Dict, Tuple, Optional
|
| 10 |
+
|
| 11 |
+
# RDKit for molecule handling
|
| 12 |
+
from rdkit import Chem
|
| 13 |
+
from rdkit.Chem import Draw, Descriptors
|
| 14 |
+
from rdkit import RDLogger
|
| 15 |
+
RDLogger.DisableLog('rdApp.*')
|
| 16 |
+
|
| 17 |
+
# Visualization libraries
|
| 18 |
+
import matplotlib.pyplot as plt
|
| 19 |
+
import seaborn as sns
|
| 20 |
+
|
| 21 |
+
# For generating images in Streamlit
|
| 22 |
+
from PIL import Image
|
| 23 |
+
|
| 24 |
+
# Suppress warnings in RDKit
|
| 25 |
+
import warnings
|
| 26 |
+
warnings.filterwarnings('ignore')
|
| 27 |
+
|
| 28 |
+
# Set Seaborn style
|
| 29 |
+
sns.set_style('whitegrid')
|
| 30 |
+
|
| 31 |
+
# Additional imports for GNN
|
| 32 |
+
import torch.nn.functional as F
|
| 33 |
+
from torch.nn import Linear, Sequential, BatchNorm1d, ReLU
|
| 34 |
+
|
| 35 |
+
from torch_geometric.data import Data
|
| 36 |
+
from torch_geometric.nn import GCNConv, GINConv
|
| 37 |
+
from torch_geometric.nn import global_mean_pool, global_add_pool
|
| 38 |
+
|
| 39 |
+
# Function to load the VAE model
|
| 40 |
+
@st.cache_resource
|
| 41 |
+
def load_vae_model(device):
|
| 42 |
+
# Load the vocabulary
|
| 43 |
+
with open('vae_vocab.pkl', 'rb') as f:
|
| 44 |
+
vocab = pickle.load(f)
|
| 45 |
+
vocab_size = len(vocab)
|
| 46 |
+
|
| 47 |
+
# Initialize the model with the same parameters
|
| 48 |
+
hidden_dim = 256 # Ensure this matches your trained model
|
| 49 |
+
latent_dim = 64 # Ensure this matches your trained model
|
| 50 |
+
|
| 51 |
+
# Define the VAE class (same as in your training script)
|
| 52 |
+
class VAE(nn.Module):
|
| 53 |
+
def __init__(self, vocab_size: int, hidden_dim: int, latent_dim: int):
|
| 54 |
+
super(VAE, self).__init__()
|
| 55 |
+
self.vocab_size = vocab_size
|
| 56 |
+
self.hidden_dim = hidden_dim
|
| 57 |
+
self.latent_dim = latent_dim
|
| 58 |
+
|
| 59 |
+
self.encoder = nn.GRU(vocab_size, hidden_dim, batch_first=True)
|
| 60 |
+
self.fc_mu = nn.Linear(hidden_dim, latent_dim)
|
| 61 |
+
self.fc_logvar = nn.Linear(hidden_dim, latent_dim)
|
| 62 |
+
|
| 63 |
+
self.decoder = nn.GRU(vocab_size + latent_dim, hidden_dim, batch_first=True)
|
| 64 |
+
self.fc_output = nn.Linear(hidden_dim, vocab_size)
|
| 65 |
+
|
| 66 |
+
def encode(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 67 |
+
_, h = self.encoder(x)
|
| 68 |
+
h = h.squeeze(0)
|
| 69 |
+
return self.fc_mu(h), self.fc_logvar(h)
|
| 70 |
+
|
| 71 |
+
def reparameterize(self, mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
|
| 72 |
+
std = torch.exp(0.5 * logvar)
|
| 73 |
+
eps = torch.randn_like(std)
|
| 74 |
+
return mu + eps * std
|
| 75 |
+
|
| 76 |
+
def decode(self, z: torch.Tensor, max_length: int) -> torch.Tensor:
|
| 77 |
+
batch_size = z.size(0)
|
| 78 |
+
h = torch.zeros(1, batch_size, self.hidden_dim).to(z.device)
|
| 79 |
+
x = torch.zeros(batch_size, 1, self.vocab_size).to(z.device)
|
| 80 |
+
x[:, 0, vocab['<']] = 1 # Start token
|
| 81 |
+
outputs = []
|
| 82 |
+
|
| 83 |
+
for _ in range(max_length):
|
| 84 |
+
z_input = z.unsqueeze(1)
|
| 85 |
+
decoder_input = torch.cat([x, z_input], dim=2)
|
| 86 |
+
output, h = self.decoder(decoder_input, h)
|
| 87 |
+
output = self.fc_output(output)
|
| 88 |
+
outputs.append(output)
|
| 89 |
+
x = torch.softmax(output, dim=-1)
|
| 90 |
+
|
| 91 |
+
return torch.cat(outputs, dim=1)
|
| 92 |
+
|
| 93 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 94 |
+
mu, logvar = self.encode(x)
|
| 95 |
+
z = self.reparameterize(mu, logvar)
|
| 96 |
+
return self.decode(z, x.size(1)), mu, logvar
|
| 97 |
+
|
| 98 |
+
model = VAE(vocab_size, hidden_dim, latent_dim)
|
| 99 |
+
model.load_state_dict(torch.load('vae_model.pth', map_location=device))
|
| 100 |
+
model.to(device)
|
| 101 |
+
model.eval()
|
| 102 |
+
return model, vocab
|
| 103 |
+
|
| 104 |
+
# Function to generate molecules using VAE
|
| 105 |
+
def generate_smiles_vae(model, vocab, num_samples=10, max_length=100):
|
| 106 |
+
model.eval()
|
| 107 |
+
inv_vocab = {v: k for k, v in vocab.items()}
|
| 108 |
+
generated_smiles = []
|
| 109 |
+
device = next(model.parameters()).device
|
| 110 |
+
|
| 111 |
+
with torch.no_grad():
|
| 112 |
+
for _ in range(num_samples):
|
| 113 |
+
z = torch.randn(1, model.latent_dim).to(device)
|
| 114 |
+
x = torch.zeros(1, 1, model.vocab_size).to(device)
|
| 115 |
+
x[0, 0, vocab['<']] = 1
|
| 116 |
+
h = torch.zeros(1, 1, model.hidden_dim).to(device)
|
| 117 |
+
|
| 118 |
+
smiles = ''
|
| 119 |
+
for _ in range(max_length):
|
| 120 |
+
z_input = z.unsqueeze(1)
|
| 121 |
+
decoder_input = torch.cat([x, z_input], dim=2)
|
| 122 |
+
output, h = model.decoder(decoder_input, h)
|
| 123 |
+
output = model.fc_output(output)
|
| 124 |
+
|
| 125 |
+
probs = torch.softmax(output.squeeze(0), dim=-1)
|
| 126 |
+
next_char = torch.multinomial(probs, 1).item()
|
| 127 |
+
|
| 128 |
+
if next_char == vocab['>']:
|
| 129 |
+
break
|
| 130 |
+
|
| 131 |
+
smiles += inv_vocab.get(next_char, '')
|
| 132 |
+
x = torch.zeros(1, 1, model.vocab_size).to(device)
|
| 133 |
+
x[0, 0, next_char] = 1
|
| 134 |
+
|
| 135 |
+
generated_smiles.append(smiles)
|
| 136 |
+
|
| 137 |
+
return generated_smiles
|
| 138 |
+
|
| 139 |
+
# Function to post-process and validate SMILES strings
|
| 140 |
+
def enhanced_post_process_smiles(smiles: str) -> str:
|
| 141 |
+
smiles = smiles.replace('<', '').replace('>', '')
|
| 142 |
+
allowed_chars = set('CNOPSFIBrClcnops()[]=@+-#0123456789')
|
| 143 |
+
smiles = ''.join(c for c in smiles if c in allowed_chars)
|
| 144 |
+
|
| 145 |
+
# Balance parentheses
|
| 146 |
+
open_count = smiles.count('(')
|
| 147 |
+
close_count = smiles.count(')')
|
| 148 |
+
if open_count > close_count:
|
| 149 |
+
smiles += ')' * (open_count - close_count)
|
| 150 |
+
elif close_count > open_count:
|
| 151 |
+
smiles = '(' * (close_count - open_count) + smiles
|
| 152 |
+
|
| 153 |
+
# Replace invalid double bonds
|
| 154 |
+
smiles = smiles.replace('==', '=')
|
| 155 |
+
|
| 156 |
+
# Attempt to close unclosed rings
|
| 157 |
+
for i in range(1, 10):
|
| 158 |
+
if smiles.count(str(i)) % 2 != 0:
|
| 159 |
+
smiles += str(i)
|
| 160 |
+
|
| 161 |
+
return smiles
|
| 162 |
+
|
| 163 |
+
def validate_and_correct_smiles(smiles: str) -> Tuple[bool, str]:
|
| 164 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 165 |
+
if mol is not None:
|
| 166 |
+
try:
|
| 167 |
+
Chem.SanitizeMol(mol)
|
| 168 |
+
return True, Chem.MolToSmiles(mol, isomericSmiles=True)
|
| 169 |
+
except:
|
| 170 |
+
pass
|
| 171 |
+
return False, smiles
|
| 172 |
+
|
| 173 |
+
# Function to analyze molecules
|
| 174 |
+
def analyze_molecules(smiles_list: List[str], training_smiles_set: set) -> Dict:
|
| 175 |
+
results = {
|
| 176 |
+
'total': len(smiles_list),
|
| 177 |
+
'valid': 0,
|
| 178 |
+
'invalid': 0,
|
| 179 |
+
'unique': 0,
|
| 180 |
+
'corrected': 0,
|
| 181 |
+
'novel': 0,
|
| 182 |
+
'valid_properties': [],
|
| 183 |
+
'novel_properties': [],
|
| 184 |
+
'invalid_smiles': []
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
unique_smiles = set()
|
| 188 |
+
novel_smiles = set()
|
| 189 |
+
|
| 190 |
+
for smiles in smiles_list:
|
| 191 |
+
processed_smiles = enhanced_post_process_smiles(smiles)
|
| 192 |
+
is_valid, corrected_smiles = validate_and_correct_smiles(processed_smiles)
|
| 193 |
+
|
| 194 |
+
if is_valid:
|
| 195 |
+
results['valid'] += 1
|
| 196 |
+
unique_smiles.add(corrected_smiles)
|
| 197 |
+
if corrected_smiles != processed_smiles:
|
| 198 |
+
results['corrected'] += 1
|
| 199 |
+
|
| 200 |
+
mol = Chem.MolFromSmiles(corrected_smiles)
|
| 201 |
+
if mol:
|
| 202 |
+
props = {
|
| 203 |
+
'smiles': corrected_smiles,
|
| 204 |
+
'MolWt': Descriptors.ExactMolWt(mol),
|
| 205 |
+
'LogP': Descriptors.MolLogP(mol),
|
| 206 |
+
'NumHDonors': Descriptors.NumHDonors(mol),
|
| 207 |
+
'NumHAcceptors': Descriptors.NumHAcceptors(mol)
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
if corrected_smiles not in training_smiles_set:
|
| 211 |
+
novel_smiles.add(corrected_smiles)
|
| 212 |
+
results['novel'] += 1
|
| 213 |
+
results['novel_properties'].append(props)
|
| 214 |
+
else:
|
| 215 |
+
results['valid_properties'].append(props)
|
| 216 |
+
else:
|
| 217 |
+
results['invalid'] += 1
|
| 218 |
+
results['invalid_smiles'].append(smiles)
|
| 219 |
+
|
| 220 |
+
results['unique'] = len(unique_smiles)
|
| 221 |
+
return results
|
| 222 |
+
|
| 223 |
+
# Function to visualize molecules
|
| 224 |
+
def visualize_molecules(smiles_list: List[str], n: int = 5) -> Optional[Image.Image]:
|
| 225 |
+
valid_mols = []
|
| 226 |
+
for smiles in smiles_list:
|
| 227 |
+
smiles = smiles.strip().strip('<>').strip()
|
| 228 |
+
if not smiles:
|
| 229 |
+
continue
|
| 230 |
+
try:
|
| 231 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 232 |
+
if mol is not None:
|
| 233 |
+
valid_mols.append(mol)
|
| 234 |
+
if len(valid_mols) == n:
|
| 235 |
+
break
|
| 236 |
+
except Exception:
|
| 237 |
+
continue
|
| 238 |
+
|
| 239 |
+
if not valid_mols:
|
| 240 |
+
return None
|
| 241 |
+
|
| 242 |
+
try:
|
| 243 |
+
img = Draw.MolsToGridImage(
|
| 244 |
+
valid_mols,
|
| 245 |
+
molsPerRow=min(3, len(valid_mols)),
|
| 246 |
+
subImgSize=(200, 200),
|
| 247 |
+
legends=[f"Mol {i+1}" for i in range(len(valid_mols))]
|
| 248 |
+
)
|
| 249 |
+
return img
|
| 250 |
+
except Exception:
|
| 251 |
+
return None
|
| 252 |
+
|
| 253 |
+
# GCN and GIN model definitions
|
| 254 |
+
class GCN(torch.nn.Module):
|
| 255 |
+
"""Graph Convolutional Network class with 3 convolutional layers and a linear layer"""
|
| 256 |
+
|
| 257 |
+
def __init__(self, dim_h):
|
| 258 |
+
"""init method for GCN
|
| 259 |
+
|
| 260 |
+
Args:
|
| 261 |
+
dim_h (int): the dimension of hidden layers
|
| 262 |
+
"""
|
| 263 |
+
super().__init__()
|
| 264 |
+
self.conv1 = GCNConv(11, dim_h)
|
| 265 |
+
self.conv2 = GCNConv(dim_h, dim_h)
|
| 266 |
+
self.conv3 = GCNConv(dim_h, dim_h)
|
| 267 |
+
self.lin = torch.nn.Linear(dim_h, 1)
|
| 268 |
+
|
| 269 |
+
def forward(self, data):
|
| 270 |
+
e = data.edge_index
|
| 271 |
+
x = data.x
|
| 272 |
+
|
| 273 |
+
x = self.conv1(x, e)
|
| 274 |
+
x = x.relu()
|
| 275 |
+
x = self.conv2(x, e)
|
| 276 |
+
x = x.relu()
|
| 277 |
+
x = self.conv3(x, e)
|
| 278 |
+
x = global_mean_pool(x, data.batch)
|
| 279 |
+
|
| 280 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
| 281 |
+
x = self.lin(x)
|
| 282 |
+
|
| 283 |
+
return x
|
| 284 |
+
|
| 285 |
+
class GIN(torch.nn.Module):
|
| 286 |
+
"""Graph Isomorphism Network class with 3 GINConv layers and 2 linear layers"""
|
| 287 |
+
|
| 288 |
+
def __init__(self, dim_h):
|
| 289 |
+
"""Initializing GIN class
|
| 290 |
+
|
| 291 |
+
Args:
|
| 292 |
+
dim_h (int): the dimension of hidden layers
|
| 293 |
+
"""
|
| 294 |
+
super(GIN, self).__init__()
|
| 295 |
+
nn1 = Sequential(Linear(11, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
|
| 296 |
+
self.conv1 = GINConv(nn1)
|
| 297 |
+
nn2 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
|
| 298 |
+
self.conv2 = GINConv(nn2)
|
| 299 |
+
nn3 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
|
| 300 |
+
self.conv3 = GINConv(nn3)
|
| 301 |
+
self.lin1 = Linear(dim_h, dim_h)
|
| 302 |
+
self.lin2 = Linear(dim_h, 1)
|
| 303 |
+
|
| 304 |
+
def forward(self, data):
|
| 305 |
+
x = data.x
|
| 306 |
+
edge_index = data.edge_index
|
| 307 |
+
batch = data.batch
|
| 308 |
+
|
| 309 |
+
# Node embeddings
|
| 310 |
+
h = self.conv1(x, edge_index)
|
| 311 |
+
h = h.relu()
|
| 312 |
+
h = self.conv2(h, edge_index)
|
| 313 |
+
h = h.relu()
|
| 314 |
+
h = self.conv3(h, edge_index)
|
| 315 |
+
|
| 316 |
+
# Graph-level readout
|
| 317 |
+
h = global_add_pool(h, batch)
|
| 318 |
+
|
| 319 |
+
h = self.lin1(h)
|
| 320 |
+
h = h.relu()
|
| 321 |
+
h = F.dropout(h, p=0.5, training=self.training)
|
| 322 |
+
h = self.lin2(h)
|
| 323 |
+
|
| 324 |
+
return h
|
| 325 |
+
|
| 326 |
+
# Function to load GNN models
|
| 327 |
+
@st.cache_resource
|
| 328 |
+
def load_gnn_models(device):
|
| 329 |
+
# Load GCN model
|
| 330 |
+
gcn_model = GCN(dim_h=128)
|
| 331 |
+
gcn_model.load_state_dict(torch.load("GCN_model.pth", map_location=device))
|
| 332 |
+
gcn_model.to(device)
|
| 333 |
+
gcn_model.eval()
|
| 334 |
+
|
| 335 |
+
# Load GIN model
|
| 336 |
+
gin_model = GIN(dim_h=64)
|
| 337 |
+
gin_model.load_state_dict(torch.load("GIN_model.pth", map_location=device))
|
| 338 |
+
gin_model.to(device)
|
| 339 |
+
gin_model.eval()
|
| 340 |
+
|
| 341 |
+
return gcn_model, gin_model
|
| 342 |
+
|
| 343 |
+
# Function to load normalization parameters
|
| 344 |
+
@st.cache_resource
|
| 345 |
+
def load_data_norm(device):
|
| 346 |
+
data_norm = torch.load('data_norm.pth', map_location=device)
|
| 347 |
+
data_mean = data_norm['mean']
|
| 348 |
+
data_std = data_norm['std']
|
| 349 |
+
return data_mean, data_std
|
| 350 |
+
|
| 351 |
+
# Function to convert SMILES to Data object
|
| 352 |
+
def smiles_to_data(smiles):
|
| 353 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 354 |
+
if mol is None:
|
| 355 |
+
return None
|
| 356 |
+
|
| 357 |
+
atoms = mol.GetAtoms()
|
| 358 |
+
num_atoms = len(atoms)
|
| 359 |
+
|
| 360 |
+
atom_type_list = ['H', 'C', 'N', 'O', 'F']
|
| 361 |
+
hybridization_list = [Chem.rdchem.HybridizationType.SP, Chem.rdchem.HybridizationType.SP2, Chem.rdchem.HybridizationType.SP3]
|
| 362 |
+
|
| 363 |
+
x = []
|
| 364 |
+
for atom in atoms:
|
| 365 |
+
atom_type = atom.GetSymbol()
|
| 366 |
+
atom_type_feature = [int(atom_type == s) for s in atom_type_list] # 5 features
|
| 367 |
+
|
| 368 |
+
# Atom degree (scalar between 0 and 4)
|
| 369 |
+
degree = atom.GetDegree()
|
| 370 |
+
degree_feature = [degree / 4] # Normalize degree to [0,1] # 1 feature
|
| 371 |
+
|
| 372 |
+
# Formal charge
|
| 373 |
+
formal_charge = atom.GetFormalCharge()
|
| 374 |
+
formal_charge_feature = [formal_charge / 4] # Assume max formal charge is 4 # 1 feature
|
| 375 |
+
|
| 376 |
+
# Aromaticity
|
| 377 |
+
is_aromatic = atom.GetIsAromatic()
|
| 378 |
+
aromatic_feature = [int(is_aromatic)] # 1 feature
|
| 379 |
+
|
| 380 |
+
# Hybridization
|
| 381 |
+
hybridization = atom.GetHybridization()
|
| 382 |
+
hybridization_feature = [int(hybridization == hyb) for hyb in hybridization_list] # 3 features
|
| 383 |
+
|
| 384 |
+
# Total features: 5 + 1 +1 +1 +3 = 11
|
| 385 |
+
atom_feature = atom_type_feature + degree_feature + formal_charge_feature + aromatic_feature + hybridization_feature
|
| 386 |
+
x.append(atom_feature)
|
| 387 |
+
|
| 388 |
+
x = torch.tensor(x, dtype=torch.float)
|
| 389 |
+
|
| 390 |
+
# Build edge indices
|
| 391 |
+
edge_index = []
|
| 392 |
+
for bond in mol.GetBonds():
|
| 393 |
+
i = bond.GetBeginAtomIdx()
|
| 394 |
+
j = bond.GetEndAtomIdx()
|
| 395 |
+
edge_index.append([i, j])
|
| 396 |
+
edge_index.append([j, i]) # Since it's undirected
|
| 397 |
+
|
| 398 |
+
edge_index = torch.tensor(edge_index, dtype=torch.long).t().contiguous()
|
| 399 |
+
|
| 400 |
+
# Build batch tensor (since batch size is 1)
|
| 401 |
+
batch = torch.zeros(num_atoms, dtype=torch.long)
|
| 402 |
+
|
| 403 |
+
# Build Data object
|
| 404 |
+
data = Data(x=x, edge_index=edge_index, batch=batch)
|
| 405 |
+
|
| 406 |
+
return data
|
| 407 |
+
|
| 408 |
+
# Streamlit app
|
| 409 |
+
def main():
|
| 410 |
+
st.set_page_config(
|
| 411 |
+
page_title="π§ͺ Molecule Generator and Property Predictor",
|
| 412 |
+
page_icon="π§ͺ",
|
| 413 |
+
layout="wide",
|
| 414 |
+
initial_sidebar_state="expanded",
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
# Main Title and Description
|
| 418 |
+
st.title("π§ͺ Molecular Generation and Analysis using VAE and GNN")
|
| 419 |
+
st.markdown("""
|
| 420 |
+
This application allows you to generate novel molecular structures using a Variational Autoencoder (VAE) model trained on the QM9 dataset.
|
| 421 |
+
You can also predict molecular properties using pre-trained Graph Neural Network (GNN) models (GCN and GIN).
|
| 422 |
+
""")
|
| 423 |
+
|
| 424 |
+
# Initialize session state variables
|
| 425 |
+
if 'analysis' not in st.session_state:
|
| 426 |
+
st.session_state.analysis = None
|
| 427 |
+
if 'generated_smiles' not in st.session_state:
|
| 428 |
+
st.session_state.generated_smiles = []
|
| 429 |
+
if 'vae_generated' not in st.session_state:
|
| 430 |
+
st.session_state.vae_generated = False
|
| 431 |
+
|
| 432 |
+
# Sidebar configuration
|
| 433 |
+
st.sidebar.title("π§ Configuration")
|
| 434 |
+
st.sidebar.markdown("Adjust the settings below to generate molecules or predict properties.")
|
| 435 |
+
|
| 436 |
+
# Load training data and canonicalize SMILES
|
| 437 |
+
@st.cache_data
|
| 438 |
+
def load_training_data():
|
| 439 |
+
df = pd.read_csv("qm9.csv")
|
| 440 |
+
smiles_list_raw = df['smiles'].tolist()
|
| 441 |
+
# Canonicalize SMILES for accurate comparison
|
| 442 |
+
smiles_list = [Chem.MolToSmiles(Chem.MolFromSmiles(s), isomericSmiles=True) for s in smiles_list_raw]
|
| 443 |
+
return set(smiles_list)
|
| 444 |
+
|
| 445 |
+
training_smiles_set = load_training_data()
|
| 446 |
+
|
| 447 |
+
# Device selection
|
| 448 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 449 |
+
|
| 450 |
+
# Model selection
|
| 451 |
+
st.sidebar.title("π Model Selection")
|
| 452 |
+
model_option = st.sidebar.selectbox("Choose a functionality", ("Generate Molecules (VAE)", "Predict Property (GNN)"))
|
| 453 |
+
|
| 454 |
+
if model_option == "Generate Molecules (VAE)":
|
| 455 |
+
# Number of samples
|
| 456 |
+
num_samples = st.sidebar.slider("Number of Molecules to Generate", min_value=5, max_value=500, value=50, step=5)
|
| 457 |
+
|
| 458 |
+
# Random seed
|
| 459 |
+
seed = st.sidebar.number_input("Random Seed", value=42, step=1)
|
| 460 |
+
torch.manual_seed(seed)
|
| 461 |
+
np.random.seed(seed)
|
| 462 |
+
|
| 463 |
+
if st.sidebar.button("π Generate Molecules"):
|
| 464 |
+
with st.spinner("Generating molecules..."):
|
| 465 |
+
# Load VAE model
|
| 466 |
+
model, vocab = load_vae_model(device)
|
| 467 |
+
generated_smiles = generate_smiles_vae(model, vocab, num_samples=num_samples)
|
| 468 |
+
# Analyze molecules
|
| 469 |
+
analysis = analyze_molecules(generated_smiles, training_smiles_set)
|
| 470 |
+
# Store results in session state
|
| 471 |
+
st.session_state.generated_smiles = generated_smiles
|
| 472 |
+
st.session_state.analysis = analysis
|
| 473 |
+
st.session_state.vae_generated = True
|
| 474 |
+
|
| 475 |
+
# Display summary
|
| 476 |
+
st.success("β
Molecule generation completed!")
|
| 477 |
+
st.subheader("Summary of Generated Molecules")
|
| 478 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 479 |
+
col1.metric("Total Generated", analysis['total'])
|
| 480 |
+
col2.metric("Valid Molecules", f"{analysis['valid']} ({(analysis['valid']/analysis['total'])*100:.2f}%)")
|
| 481 |
+
col3.metric("Unique Molecules", f"{analysis['unique']} ({(analysis['unique']/analysis['total'])*100:.2f}%)")
|
| 482 |
+
col4.metric("Corrected Molecules", f"{analysis['corrected']} ({(analysis['corrected']/analysis['total'])*100:.2f}%)")
|
| 483 |
+
|
| 484 |
+
col1, col2 = st.columns(2)
|
| 485 |
+
col1.metric("Novel Molecules", f"{analysis['novel']} ({(analysis['novel']/analysis['total'])*100:.2f}%)")
|
| 486 |
+
col2.metric("Invalid Molecules", f"{analysis['invalid']} ({(analysis['invalid']/analysis['total'])*100:.2f}%)")
|
| 487 |
+
|
| 488 |
+
# Display properties
|
| 489 |
+
if analysis['valid_properties'] or analysis['novel_properties']:
|
| 490 |
+
st.subheader("Properties of Generated Molecules")
|
| 491 |
+
|
| 492 |
+
tab1, tab2 = st.tabs(["β
Valid Molecules", "π Novel Molecules"])
|
| 493 |
+
with tab1:
|
| 494 |
+
if analysis['valid_properties']:
|
| 495 |
+
df_valid = pd.DataFrame(analysis['valid_properties'])
|
| 496 |
+
st.dataframe(df_valid)
|
| 497 |
+
# Visualize valid molecules (limit to 9 for performance)
|
| 498 |
+
st.subheader("Sample Valid Molecules")
|
| 499 |
+
mol_image_valid = visualize_molecules([prop['smiles'] for prop in analysis['valid_properties']], n=9)
|
| 500 |
+
if mol_image_valid:
|
| 501 |
+
st.image(mol_image_valid)
|
| 502 |
+
else:
|
| 503 |
+
st.write("No valid molecules to display.")
|
| 504 |
+
else:
|
| 505 |
+
st.write("No valid molecules found.")
|
| 506 |
+
|
| 507 |
+
with tab2:
|
| 508 |
+
if analysis['novel_properties']:
|
| 509 |
+
df_novel = pd.DataFrame(analysis['novel_properties'])
|
| 510 |
+
st.dataframe(df_novel)
|
| 511 |
+
# Visualize novel molecules (limit to 9 for performance)
|
| 512 |
+
st.subheader("Sample Novel Molecules")
|
| 513 |
+
mol_image_novel = visualize_molecules([prop['smiles'] for prop in analysis['novel_properties']], n=9)
|
| 514 |
+
if mol_image_novel:
|
| 515 |
+
st.image(mol_image_novel)
|
| 516 |
+
else:
|
| 517 |
+
st.write("No novel molecules to display.")
|
| 518 |
+
else:
|
| 519 |
+
st.write("No novel molecules found.")
|
| 520 |
+
|
| 521 |
+
# Property distributions
|
| 522 |
+
st.subheader("Property Distributions")
|
| 523 |
+
fig, axs = plt.subplots(2, 2, figsize=(14, 10))
|
| 524 |
+
if analysis['valid_properties']:
|
| 525 |
+
sns.histplot(df_valid['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='skyblue', label='Valid')
|
| 526 |
+
if analysis['novel_properties']:
|
| 527 |
+
sns.histplot(df_novel['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='orange', label='Novel')
|
| 528 |
+
axs[0, 0].set_title('Molecular Weight Distribution')
|
| 529 |
+
axs[0, 0].legend()
|
| 530 |
+
|
| 531 |
+
if analysis['valid_properties']:
|
| 532 |
+
sns.histplot(df_valid['LogP'], bins=20, ax=axs[0, 1], kde=True, color='skyblue', label='Valid')
|
| 533 |
+
if analysis['novel_properties']:
|
| 534 |
+
sns.histplot(df_novel['LogP'], bins=20, ax=axs[0, 1], kde=True, color='orange', label='Novel')
|
| 535 |
+
axs[0, 1].set_title('LogP Distribution')
|
| 536 |
+
axs[0, 1].legend()
|
| 537 |
+
|
| 538 |
+
if analysis['valid_properties']:
|
| 539 |
+
sns.histplot(df_valid['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(),
|
| 540 |
+
df_novel['NumHDonors'].max()) + 2),
|
| 541 |
+
ax=axs[1, 0], kde=False, color='skyblue', label='Valid')
|
| 542 |
+
if analysis['novel_properties']:
|
| 543 |
+
sns.histplot(df_novel['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(),
|
| 544 |
+
df_novel['NumHDonors'].max()) + 2),
|
| 545 |
+
ax=axs[1, 0], kde=False, color='orange', label='Novel')
|
| 546 |
+
axs[1, 0].set_title('Number of H Donors')
|
| 547 |
+
axs[1, 0].legend()
|
| 548 |
+
|
| 549 |
+
if analysis['valid_properties']:
|
| 550 |
+
sns.histplot(df_valid['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(),
|
| 551 |
+
df_novel['NumHAcceptors'].max()) + 2),
|
| 552 |
+
ax=axs[1, 1], kde=False, color='skyblue', label='Valid')
|
| 553 |
+
if analysis['novel_properties']:
|
| 554 |
+
sns.histplot(df_novel['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(),
|
| 555 |
+
df_novel['NumHAcceptors'].max()) + 2),
|
| 556 |
+
ax=axs[1, 1], kde=False, color='orange', label='Novel')
|
| 557 |
+
axs[1, 1].set_title('Number of H Acceptors')
|
| 558 |
+
axs[1, 1].legend()
|
| 559 |
+
|
| 560 |
+
plt.tight_layout()
|
| 561 |
+
st.pyplot(fig)
|
| 562 |
+
|
| 563 |
+
# Download options
|
| 564 |
+
csv_valid = df_valid.to_csv(index=False).encode('utf-8')
|
| 565 |
+
csv_novel = df_novel.to_csv(index=False).encode('utf-8')
|
| 566 |
+
col1, col2 = st.columns(2)
|
| 567 |
+
with col1:
|
| 568 |
+
st.download_button(
|
| 569 |
+
label="πΎ Download Valid Molecules CSV",
|
| 570 |
+
data=csv_valid,
|
| 571 |
+
file_name='valid_molecules.csv',
|
| 572 |
+
mime='text/csv'
|
| 573 |
+
)
|
| 574 |
+
with col2:
|
| 575 |
+
st.download_button(
|
| 576 |
+
label="πΎ Download Novel Molecules CSV",
|
| 577 |
+
data=csv_novel,
|
| 578 |
+
file_name='novel_molecules.csv',
|
| 579 |
+
mime='text/csv'
|
| 580 |
+
)
|
| 581 |
+
else:
|
| 582 |
+
st.warning("No valid or novel molecules were generated.")
|
| 583 |
+
|
| 584 |
+
elif model_option == "Predict Property (GNN)":
|
| 585 |
+
# Load GNN models
|
| 586 |
+
with st.spinner("Loading GNN models..."):
|
| 587 |
+
gcn_model, gin_model = load_gnn_models(device)
|
| 588 |
+
# Load normalization parameters
|
| 589 |
+
data_mean, data_std = load_data_norm(device)
|
| 590 |
+
|
| 591 |
+
# GNN Model selection
|
| 592 |
+
gnn_model_option = st.sidebar.selectbox("Choose a GNN model", ("GCN", "GIN"))
|
| 593 |
+
|
| 594 |
+
st.subheader("π Predict Molecular Property using GNN")
|
| 595 |
+
st.markdown("""
|
| 596 |
+
Input a SMILES string to predict the dipole moment using the selected GNN model.
|
| 597 |
+
""")
|
| 598 |
+
|
| 599 |
+
# User inputs a SMILES string
|
| 600 |
+
user_smiles = st.text_input("Enter a SMILES string for property prediction:", "")
|
| 601 |
+
|
| 602 |
+
if user_smiles:
|
| 603 |
+
data = smiles_to_data(user_smiles)
|
| 604 |
+
if data:
|
| 605 |
+
data = data.to(device)
|
| 606 |
+
if gnn_model_option == "GCN":
|
| 607 |
+
prediction = gcn_model(data)
|
| 608 |
+
prediction = prediction.item()
|
| 609 |
+
elif gnn_model_option == "GIN":
|
| 610 |
+
prediction = gin_model(data)
|
| 611 |
+
prediction = prediction.item()
|
| 612 |
+
# Unnormalize the prediction
|
| 613 |
+
prediction = prediction * data_std.item() + data_mean.item()
|
| 614 |
+
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}")
|
| 615 |
+
# Display molecule
|
| 616 |
+
mol = Chem.MolFromSmiles(user_smiles)
|
| 617 |
+
if mol:
|
| 618 |
+
st.subheader("Molecular Structure")
|
| 619 |
+
st.image(Draw.MolToImage(mol, size=(300, 300)))
|
| 620 |
+
else:
|
| 621 |
+
st.error("β Invalid SMILES string.")
|
| 622 |
+
|
| 623 |
+
st.markdown("---")
|
| 624 |
+
st.markdown("### Or select a molecule from the generated molecules (if any).")
|
| 625 |
+
|
| 626 |
+
# Check if molecules have been generated
|
| 627 |
+
if st.session_state.vae_generated and st.session_state.analysis is not None:
|
| 628 |
+
# Combine valid and novel properties
|
| 629 |
+
all_properties = st.session_state.analysis['valid_properties'] + st.session_state.analysis['novel_properties']
|
| 630 |
+
if all_properties:
|
| 631 |
+
smiles_options = [prop['smiles'] for prop in all_properties]
|
| 632 |
+
selected_smiles = st.selectbox("Select a molecule", smiles_options)
|
| 633 |
+
if selected_smiles:
|
| 634 |
+
data = smiles_to_data(selected_smiles)
|
| 635 |
+
if data:
|
| 636 |
+
data = data.to(device)
|
| 637 |
+
if gnn_model_option == "GCN":
|
| 638 |
+
prediction = gcn_model(data)
|
| 639 |
+
prediction = prediction.item()
|
| 640 |
+
elif gnn_model_option == "GIN":
|
| 641 |
+
prediction = gin_model(data)
|
| 642 |
+
prediction = prediction.item()
|
| 643 |
+
# Unnormalize the prediction
|
| 644 |
+
prediction = prediction * data_std.item() + data_mean.item()
|
| 645 |
+
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}")
|
| 646 |
+
# Display molecule
|
| 647 |
+
mol = Chem.MolFromSmiles(selected_smiles)
|
| 648 |
+
if mol:
|
| 649 |
+
st.subheader("Molecular Structure")
|
| 650 |
+
st.image(Draw.MolToImage(mol, size=(300, 300)))
|
| 651 |
+
else:
|
| 652 |
+
st.error("β Invalid SMILES string.")
|
| 653 |
+
else:
|
| 654 |
+
st.info("π No valid or novel molecules available.")
|
| 655 |
+
else:
|
| 656 |
+
st.info("π No generated molecules available. Generate molecules using the VAE first.")
|
| 657 |
+
|
| 658 |
+
# About section
|
| 659 |
+
st.sidebar.title("βΉοΈ About")
|
| 660 |
+
st.sidebar.info("""
|
| 661 |
+
**Molecule Generator and Property Predictor App**
|
| 662 |
+
|
| 663 |
+
This app uses a Variational Autoencoder (VAE) model and Graph Neural Networks (GNNs) to generate novel molecular structures and predict molecular properties.
|
| 664 |
+
|
| 665 |
+
- **Developed by**: Arjun, Kaustubh, and Nachiket
|
| 666 |
+
- **Hugging Face Repository**: [Your Hugging Face Repository](https://huggingface.co/YourRepositoryLink)
|
| 667 |
+
""")
|
| 668 |
+
|
| 669 |
+
# Hide Streamlit footer and header
|
| 670 |
+
hide_streamlit_style = """
|
| 671 |
+
<style>
|
| 672 |
+
footer {visibility: hidden;}
|
| 673 |
+
header {visibility: hidden;}
|
| 674 |
+
</style>
|
| 675 |
+
"""
|
| 676 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
| 677 |
+
|
| 678 |
+
# Run the app
|
| 679 |
+
if __name__ == "__main__":
|
| 680 |
+
main()
|
data_norm.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d86e7264dc9cf6b98296acc1ac0d1180511bc714f7d5a3336212c27c9df32ff7
|
| 3 |
+
size 1444
|
gan_mol_dict.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd75fc4b2d59d77b7abfc85d1cbe65c7caff987661a7423db8b8848044c99e7f
|
| 3 |
+
size 697168
|
qm9.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e668f8c34e4bc392a90d417a50a5eed3b64b842a817a633024bdc054c68ccb4
|
| 3 |
+
size 29856825
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
torch-scatter
|
| 5 |
+
torch-sparse
|
| 6 |
+
torch-cluster
|
| 7 |
+
torch-spline-conv
|
| 8 |
+
torch-geometric
|
| 9 |
+
rdkit-pypi
|
| 10 |
+
pandas
|
| 11 |
+
numpy
|
| 12 |
+
matplotlib
|
| 13 |
+
seaborn
|
| 14 |
+
Pillow
|
vae_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60b3c9608612eeebfda8659bc017caeca6a26caebc3fa8b07ee5c9abd8af7f03
|
| 3 |
+
size 2082136
|
vae_vocab.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a3784f5b486a116e95054673663ef811802663affb4b1180c36f53090cc2f00
|
| 3 |
+
size 154
|