File size: 9,269 Bytes
0e679c9
 
 
 
 
 
 
 
 
 
 
29151ba
0e679c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29151ba
0e679c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2ad3fc
0e679c9
 
7249c30
8cf2dbd
 
 
0e679c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2ad3fc
0e679c9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt

# --------------------------------------
# Utility functions
# --------------------------------------

def generate_random_pile(num_points=50, max_height=10.0, noise=0.5):
    """
    Generates a random 'pile shape' with a certain maximum height.
    shape it as a bell-curve-like mound plus random noise.
    
    Args:
        num_points (int): Number of discrete x-points to model the silo cross-section.
        max_height (float): Approximate max possible height.
        noise (float): Random fluctuations around the main shape.
        
    Returns:
        x_array (np.array): X-coordinates from 0..1 (normalized).
        height_array (np.array): Random mound shape values at each x.
    """
    x_array = np.linspace(0, 1, num_points)
    center = 0.5
    sigma = 0.15  # controls how wide the mound is
    base_curve = max_height * np.exp(-0.5 * ((x_array - center) / sigma)**2)
    
    random_variation = noise * np.random.randn(num_points)
    height_array = np.clip(base_curve + random_variation, 0, None)
    return x_array, height_array

def simulate_sensor_readings(x_array, height_array, sensor_type="LiDAR", num_sensors=5):
    """
    Simulates sensor readings from the height array.
    randomly pick a few positions along x_array,
    then record the height + some noise depending on sensor_type.
    
    Args:
        x_array (np.array): X-coordinates for the silo cross-section
        height_array (np.array): True pile height at each x
        sensor_type (str): "LiDAR" or "Ultrasonic" - determines noise level
        num_sensors (int): number of sensors/points to read
        
    Returns:
        sensor_positions (np.array): Chosen positions
        sensor_heights (np.array): Measured heights (with noise)
    """
    sensor_positions = np.random.choice(x_array, size=num_sensors, replace=False)
    sensor_positions = np.sort(sensor_positions)
    
    sensor_heights = []
    for pos in sensor_positions:
        idx = np.argmin(np.abs(x_array - pos))
        true_height = height_array[idx]
        
        if sensor_type.lower() == "lidar":
            noise_std = 0.1
        else:
            noise_std = 0.2
        
        measured = true_height + np.random.randn() * noise_std
        sensor_heights.append(max(measured, 0.0))
    
    return sensor_positions, np.array(sensor_heights)

def estimate_peak_height(sensor_positions, sensor_heights):
    """
    Simple approach: take the max sensor reading as approximate peak.
    """
    return np.max(sensor_heights)

def estimate_volume(x_array, height_array, silo_width=5.0, silo_depth=5.0):
    """
    Approximates volume of the pile using trapezoidal integration
    across the 2D cross-section, then multiplying by depth.
    
    Args:
        x_array: normalized x from 0..1
        height_array: height at each x
        silo_width (float): actual width of silo in meters
        silo_depth (float): depth into the page in meters
        
    Returns:
        volume (float): approximate volume in cubic meters
    """
    x_meters = x_array * silo_width
    area_2d = np.trapz(height_array, x_meters)  # m^2
    volume = area_2d * silo_depth               # m^3
    return volume

def plot_pile_shape(x_array, height_array, sensor_positions=None, sensor_heights=None):
    """
    Creates and returns a matplotlib figure showing
    the random pile shape and optionally sensor readings.
    """
    fig, ax = plt.subplots(figsize=(5,3))
    ax.plot(x_array, height_array, label='Pile Shape', linewidth=2, color='blue')
    
    if sensor_positions is not None and sensor_heights is not None:
        ax.scatter(sensor_positions, sensor_heights, color='red', 
                   label='Sensor Readings', s=50, zorder=5)
    
    ax.set_title("Silo Cross-Section (2D) - Wood Chip Pile")
    ax.set_xlabel("Normalized Silo Width (0..1)")
    ax.set_ylabel("Height (m)")
    ax.legend()
    fig.tight_layout()
    return fig

def plot_sensor_bar(sensor_positions, sensor_heights):
    """
    Creates and returns a bar chart showing sensor heights
    vs. sensor ID or position.
    """
    fig, ax = plt.subplots(figsize=(4,3))
    # Let's use sensor index as x-ticks
    indices = np.arange(len(sensor_positions))
    ax.bar(indices, sensor_heights, color='green')
    ax.set_title("Sensor Readings Bar Chart")
    ax.set_xlabel("Sensor Index")
    ax.set_ylabel("Measured Height (m)")
    ax.set_xticks(indices)
    ax.set_xticklabels([f"{pos:.2f}" for pos in sensor_positions], rotation=45)
    fig.tight_layout()
    return fig

# --------------------------------------
# Streamlit App
# --------------------------------------

st.set_page_config(page_title="ITC PSPD - Wood Chip Silo Demo", layout="centered")

st.title("Height Detection Of Wood Chips in Closed Silos - ITC PSPD Demo")

st.markdown("""
Welcome to a simple demonstration of *Wood-chip silo height profile Detection and Volume Estimation*.  
This is an **Industry 4.0** inspired solution to **digitally** track the *height* and *volume*  
of wood chips in a silo, supporting **paperboard and specialty paper** operations at **ITC PSPD**.

---
""")

# Sidebar controls
st.sidebar.header("Simulation Controls")

sensor_type = st.sidebar.selectbox("Select Sensor Type:", ["LiDAR", "Ultrasonic"])
max_height = st.sidebar.slider("Max Potential Height (m):", 5.0, 30.0, 10.0, 1.0)
noise_level = st.sidebar.slider("Random Noise Level:", 0.0, 3.0, 0.5, 0.1)
num_points = st.sidebar.slider("Pile Resolution (Points):", 20, 200, 50, 10)
num_sensors = st.sidebar.slider("Number of Sensors:", 1, 12, 5)
silo_width = st.sidebar.slider("Silo Width (m):", 1.0, 20.0, 5.0, 1.0)
silo_depth = st.sidebar.slider("Silo Depth (m):", 1.0, 20.0, 5.0, 1.0)

# Button to generate new random pile
if "x_array" not in st.session_state or "height_array" not in st.session_state:
    st.session_state["x_array"] = None
    st.session_state["height_array"] = None

if st.sidebar.button("Generate New Random Pile"):
    x_array, height_array = generate_random_pile(
        num_points=num_points,
        max_height=max_height,
        noise=noise_level
    )
    st.session_state["x_array"] = x_array
    st.session_state["height_array"] = height_array

# If we have data, proceed
if st.session_state["x_array"] is not None and st.session_state["height_array"] is not None:
    x_array = st.session_state["x_array"]
    height_array = st.session_state["height_array"]
    
    # Simulate sensor readings
    sensor_positions, sensor_heights = simulate_sensor_readings(
        x_array, height_array, sensor_type, num_sensors
    )
    
    # Estimate peak height from sensor
    approx_peak = estimate_peak_height(sensor_positions, sensor_heights)
    # Estimate volume
    volume_est = estimate_volume(x_array, height_array, silo_width, silo_depth)
    
    st.subheader("1) Silo Cross-Section Visualization")
    fig_pile = plot_pile_shape(x_array, height_array, sensor_positions, sensor_heights)
    st.pyplot(fig_pile)
    
    # Show measured peak height
    col1, col2 = st.columns(2)
    with col1:
        st.markdown(f"**Approx Peak Height (from sensors):** `{approx_peak:.2f} m`")
        st.progress(min(approx_peak/max_height, 1.0))
    with col2:
        st.markdown(f"**Estimated Volume:** `{volume_est:.2f} m³`")
        st.progress(min(volume_est/((max_height*silo_width*silo_depth)), 1.0))
    
    st.subheader("2) Sensor Data Overview")
    
    col3, col4 = st.columns(2)
    with col3:
        # Show bar chart of sensor readings
        fig_bars = plot_sensor_bar(sensor_positions, sensor_heights)
        st.pyplot(fig_bars)
    with col4:
        st.write("### Sensor Data Table")
        table_data = {
            "Position (norm)": [f"{pos:.2f}" for pos in sensor_positions],
            "Height (m)": [f"{h:.2f}" for h in sensor_heights]
        }
        st.table(table_data)
    
    st.markdown("---")
    
    st.markdown("""
    ### Interpretation & Industry 4.0 Connection

    - **Digital Twins**: This simulation mimics how a *digital twin* of the silo tracks
      wood-chip heights. The real system could have *LiDAR* sensors scanning
      or an array of *ultrasonic* sensors measuring the pile at intervals.
    - **Data-Driven Insights**: Automated volume estimation helps production planning, 
      ensuring continuous supply for **paperboard** manufacturing while minimizing 
      waste or silo overflow.
    - **ITC PSPD**: As a leading division in paper & packaging, adopting *Industry 4.0* 
      solutions supports sustainability and operational efficiency—aligned with ITC’s 
      triple bottom line.
    - **Big Data & AI**: If multiple silos or sites feed data into a cloud platform, 
      advanced analytics/predictive models can optimize inventory or detect anomalies.

    ---
    """)
else:
    st.info("Use the **sidebar** to generate a new random pile and view the results.")

st.markdown("""
## Made By:
- Name: Kaustubh Raykar 
- PRN: 21070126048
- Btech AIML 2021-25
- Contact: +91 7020524609
- Symbiosis Institute Of Technology, Pune 
- [email protected]
- [email protected]

**Thank you** for exploring this Wood Chip Silo Demo for **ITC PSPD**.
""")