File size: 9,269 Bytes
0e679c9 29151ba 0e679c9 29151ba 0e679c9 b2ad3fc 0e679c9 7249c30 8cf2dbd 0e679c9 b2ad3fc 0e679c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
# --------------------------------------
# Utility functions
# --------------------------------------
def generate_random_pile(num_points=50, max_height=10.0, noise=0.5):
"""
Generates a random 'pile shape' with a certain maximum height.
shape it as a bell-curve-like mound plus random noise.
Args:
num_points (int): Number of discrete x-points to model the silo cross-section.
max_height (float): Approximate max possible height.
noise (float): Random fluctuations around the main shape.
Returns:
x_array (np.array): X-coordinates from 0..1 (normalized).
height_array (np.array): Random mound shape values at each x.
"""
x_array = np.linspace(0, 1, num_points)
center = 0.5
sigma = 0.15 # controls how wide the mound is
base_curve = max_height * np.exp(-0.5 * ((x_array - center) / sigma)**2)
random_variation = noise * np.random.randn(num_points)
height_array = np.clip(base_curve + random_variation, 0, None)
return x_array, height_array
def simulate_sensor_readings(x_array, height_array, sensor_type="LiDAR", num_sensors=5):
"""
Simulates sensor readings from the height array.
randomly pick a few positions along x_array,
then record the height + some noise depending on sensor_type.
Args:
x_array (np.array): X-coordinates for the silo cross-section
height_array (np.array): True pile height at each x
sensor_type (str): "LiDAR" or "Ultrasonic" - determines noise level
num_sensors (int): number of sensors/points to read
Returns:
sensor_positions (np.array): Chosen positions
sensor_heights (np.array): Measured heights (with noise)
"""
sensor_positions = np.random.choice(x_array, size=num_sensors, replace=False)
sensor_positions = np.sort(sensor_positions)
sensor_heights = []
for pos in sensor_positions:
idx = np.argmin(np.abs(x_array - pos))
true_height = height_array[idx]
if sensor_type.lower() == "lidar":
noise_std = 0.1
else:
noise_std = 0.2
measured = true_height + np.random.randn() * noise_std
sensor_heights.append(max(measured, 0.0))
return sensor_positions, np.array(sensor_heights)
def estimate_peak_height(sensor_positions, sensor_heights):
"""
Simple approach: take the max sensor reading as approximate peak.
"""
return np.max(sensor_heights)
def estimate_volume(x_array, height_array, silo_width=5.0, silo_depth=5.0):
"""
Approximates volume of the pile using trapezoidal integration
across the 2D cross-section, then multiplying by depth.
Args:
x_array: normalized x from 0..1
height_array: height at each x
silo_width (float): actual width of silo in meters
silo_depth (float): depth into the page in meters
Returns:
volume (float): approximate volume in cubic meters
"""
x_meters = x_array * silo_width
area_2d = np.trapz(height_array, x_meters) # m^2
volume = area_2d * silo_depth # m^3
return volume
def plot_pile_shape(x_array, height_array, sensor_positions=None, sensor_heights=None):
"""
Creates and returns a matplotlib figure showing
the random pile shape and optionally sensor readings.
"""
fig, ax = plt.subplots(figsize=(5,3))
ax.plot(x_array, height_array, label='Pile Shape', linewidth=2, color='blue')
if sensor_positions is not None and sensor_heights is not None:
ax.scatter(sensor_positions, sensor_heights, color='red',
label='Sensor Readings', s=50, zorder=5)
ax.set_title("Silo Cross-Section (2D) - Wood Chip Pile")
ax.set_xlabel("Normalized Silo Width (0..1)")
ax.set_ylabel("Height (m)")
ax.legend()
fig.tight_layout()
return fig
def plot_sensor_bar(sensor_positions, sensor_heights):
"""
Creates and returns a bar chart showing sensor heights
vs. sensor ID or position.
"""
fig, ax = plt.subplots(figsize=(4,3))
# Let's use sensor index as x-ticks
indices = np.arange(len(sensor_positions))
ax.bar(indices, sensor_heights, color='green')
ax.set_title("Sensor Readings Bar Chart")
ax.set_xlabel("Sensor Index")
ax.set_ylabel("Measured Height (m)")
ax.set_xticks(indices)
ax.set_xticklabels([f"{pos:.2f}" for pos in sensor_positions], rotation=45)
fig.tight_layout()
return fig
# --------------------------------------
# Streamlit App
# --------------------------------------
st.set_page_config(page_title="ITC PSPD - Wood Chip Silo Demo", layout="centered")
st.title("Height Detection Of Wood Chips in Closed Silos - ITC PSPD Demo")
st.markdown("""
Welcome to a simple demonstration of *Wood-chip silo height profile Detection and Volume Estimation*.
This is an **Industry 4.0** inspired solution to **digitally** track the *height* and *volume*
of wood chips in a silo, supporting **paperboard and specialty paper** operations at **ITC PSPD**.
---
""")
# Sidebar controls
st.sidebar.header("Simulation Controls")
sensor_type = st.sidebar.selectbox("Select Sensor Type:", ["LiDAR", "Ultrasonic"])
max_height = st.sidebar.slider("Max Potential Height (m):", 5.0, 30.0, 10.0, 1.0)
noise_level = st.sidebar.slider("Random Noise Level:", 0.0, 3.0, 0.5, 0.1)
num_points = st.sidebar.slider("Pile Resolution (Points):", 20, 200, 50, 10)
num_sensors = st.sidebar.slider("Number of Sensors:", 1, 12, 5)
silo_width = st.sidebar.slider("Silo Width (m):", 1.0, 20.0, 5.0, 1.0)
silo_depth = st.sidebar.slider("Silo Depth (m):", 1.0, 20.0, 5.0, 1.0)
# Button to generate new random pile
if "x_array" not in st.session_state or "height_array" not in st.session_state:
st.session_state["x_array"] = None
st.session_state["height_array"] = None
if st.sidebar.button("Generate New Random Pile"):
x_array, height_array = generate_random_pile(
num_points=num_points,
max_height=max_height,
noise=noise_level
)
st.session_state["x_array"] = x_array
st.session_state["height_array"] = height_array
# If we have data, proceed
if st.session_state["x_array"] is not None and st.session_state["height_array"] is not None:
x_array = st.session_state["x_array"]
height_array = st.session_state["height_array"]
# Simulate sensor readings
sensor_positions, sensor_heights = simulate_sensor_readings(
x_array, height_array, sensor_type, num_sensors
)
# Estimate peak height from sensor
approx_peak = estimate_peak_height(sensor_positions, sensor_heights)
# Estimate volume
volume_est = estimate_volume(x_array, height_array, silo_width, silo_depth)
st.subheader("1) Silo Cross-Section Visualization")
fig_pile = plot_pile_shape(x_array, height_array, sensor_positions, sensor_heights)
st.pyplot(fig_pile)
# Show measured peak height
col1, col2 = st.columns(2)
with col1:
st.markdown(f"**Approx Peak Height (from sensors):** `{approx_peak:.2f} m`")
st.progress(min(approx_peak/max_height, 1.0))
with col2:
st.markdown(f"**Estimated Volume:** `{volume_est:.2f} m³`")
st.progress(min(volume_est/((max_height*silo_width*silo_depth)), 1.0))
st.subheader("2) Sensor Data Overview")
col3, col4 = st.columns(2)
with col3:
# Show bar chart of sensor readings
fig_bars = plot_sensor_bar(sensor_positions, sensor_heights)
st.pyplot(fig_bars)
with col4:
st.write("### Sensor Data Table")
table_data = {
"Position (norm)": [f"{pos:.2f}" for pos in sensor_positions],
"Height (m)": [f"{h:.2f}" for h in sensor_heights]
}
st.table(table_data)
st.markdown("---")
st.markdown("""
### Interpretation & Industry 4.0 Connection
- **Digital Twins**: This simulation mimics how a *digital twin* of the silo tracks
wood-chip heights. The real system could have *LiDAR* sensors scanning
or an array of *ultrasonic* sensors measuring the pile at intervals.
- **Data-Driven Insights**: Automated volume estimation helps production planning,
ensuring continuous supply for **paperboard** manufacturing while minimizing
waste or silo overflow.
- **ITC PSPD**: As a leading division in paper & packaging, adopting *Industry 4.0*
solutions supports sustainability and operational efficiency—aligned with ITC’s
triple bottom line.
- **Big Data & AI**: If multiple silos or sites feed data into a cloud platform,
advanced analytics/predictive models can optimize inventory or detect anomalies.
---
""")
else:
st.info("Use the **sidebar** to generate a new random pile and view the results.")
st.markdown("""
## Made By:
- Name: Kaustubh Raykar
- PRN: 21070126048
- Btech AIML 2021-25
- Contact: +91 7020524609
- Symbiosis Institute Of Technology, Pune
- [email protected]
- [email protected]
**Thank you** for exploring this Wood Chip Silo Demo for **ITC PSPD**.
""")
|