import streamlit as st import numpy as np import matplotlib.pyplot as plt # -------------------------------------- # Utility functions # -------------------------------------- def generate_random_pile(num_points=50, max_height=10.0, noise=0.5): """ Generates a random 'pile shape' with a certain maximum height. shape it as a bell-curve-like mound plus random noise. Args: num_points (int): Number of discrete x-points to model the silo cross-section. max_height (float): Approximate max possible height. noise (float): Random fluctuations around the main shape. Returns: x_array (np.array): X-coordinates from 0..1 (normalized). height_array (np.array): Random mound shape values at each x. """ x_array = np.linspace(0, 1, num_points) center = 0.5 sigma = 0.15 # controls how wide the mound is base_curve = max_height * np.exp(-0.5 * ((x_array - center) / sigma)**2) random_variation = noise * np.random.randn(num_points) height_array = np.clip(base_curve + random_variation, 0, None) return x_array, height_array def simulate_sensor_readings(x_array, height_array, sensor_type="LiDAR", num_sensors=5): """ Simulates sensor readings from the height array. randomly pick a few positions along x_array, then record the height + some noise depending on sensor_type. Args: x_array (np.array): X-coordinates for the silo cross-section height_array (np.array): True pile height at each x sensor_type (str): "LiDAR" or "Ultrasonic" - determines noise level num_sensors (int): number of sensors/points to read Returns: sensor_positions (np.array): Chosen positions sensor_heights (np.array): Measured heights (with noise) """ sensor_positions = np.random.choice(x_array, size=num_sensors, replace=False) sensor_positions = np.sort(sensor_positions) sensor_heights = [] for pos in sensor_positions: idx = np.argmin(np.abs(x_array - pos)) true_height = height_array[idx] if sensor_type.lower() == "lidar": noise_std = 0.1 else: noise_std = 0.2 measured = true_height + np.random.randn() * noise_std sensor_heights.append(max(measured, 0.0)) return sensor_positions, np.array(sensor_heights) def estimate_peak_height(sensor_positions, sensor_heights): """ Simple approach: take the max sensor reading as approximate peak. """ return np.max(sensor_heights) def estimate_volume(x_array, height_array, silo_width=5.0, silo_depth=5.0): """ Approximates volume of the pile using trapezoidal integration across the 2D cross-section, then multiplying by depth. Args: x_array: normalized x from 0..1 height_array: height at each x silo_width (float): actual width of silo in meters silo_depth (float): depth into the page in meters Returns: volume (float): approximate volume in cubic meters """ x_meters = x_array * silo_width area_2d = np.trapz(height_array, x_meters) # m^2 volume = area_2d * silo_depth # m^3 return volume def plot_pile_shape(x_array, height_array, sensor_positions=None, sensor_heights=None): """ Creates and returns a matplotlib figure showing the random pile shape and optionally sensor readings. """ fig, ax = plt.subplots(figsize=(5,3)) ax.plot(x_array, height_array, label='Pile Shape', linewidth=2, color='blue') if sensor_positions is not None and sensor_heights is not None: ax.scatter(sensor_positions, sensor_heights, color='red', label='Sensor Readings', s=50, zorder=5) ax.set_title("Silo Cross-Section (2D) - Wood Chip Pile") ax.set_xlabel("Normalized Silo Width (0..1)") ax.set_ylabel("Height (m)") ax.legend() fig.tight_layout() return fig def plot_sensor_bar(sensor_positions, sensor_heights): """ Creates and returns a bar chart showing sensor heights vs. sensor ID or position. """ fig, ax = plt.subplots(figsize=(4,3)) # Let's use sensor index as x-ticks indices = np.arange(len(sensor_positions)) ax.bar(indices, sensor_heights, color='green') ax.set_title("Sensor Readings Bar Chart") ax.set_xlabel("Sensor Index") ax.set_ylabel("Measured Height (m)") ax.set_xticks(indices) ax.set_xticklabels([f"{pos:.2f}" for pos in sensor_positions], rotation=45) fig.tight_layout() return fig # -------------------------------------- # Streamlit App # -------------------------------------- st.set_page_config(page_title="ITC PSPD - Wood Chip Silo Demo", layout="centered") st.title("Height Detection Of Wood Chips in Closed Silos - ITC PSPD Demo") st.markdown(""" Welcome to a simple demonstration of *Wood-chip silo height profile Detection and Volume Estimation*. This is an **Industry 4.0** inspired solution to **digitally** track the *height* and *volume* of wood chips in a silo, supporting **paperboard and specialty paper** operations at **ITC PSPD**. --- """) # Sidebar controls st.sidebar.header("Simulation Controls") sensor_type = st.sidebar.selectbox("Select Sensor Type:", ["LiDAR", "Ultrasonic"]) max_height = st.sidebar.slider("Max Potential Height (m):", 5.0, 30.0, 10.0, 1.0) noise_level = st.sidebar.slider("Random Noise Level:", 0.0, 3.0, 0.5, 0.1) num_points = st.sidebar.slider("Pile Resolution (Points):", 20, 200, 50, 10) num_sensors = st.sidebar.slider("Number of Sensors:", 1, 12, 5) silo_width = st.sidebar.slider("Silo Width (m):", 1.0, 20.0, 5.0, 1.0) silo_depth = st.sidebar.slider("Silo Depth (m):", 1.0, 20.0, 5.0, 1.0) # Button to generate new random pile if "x_array" not in st.session_state or "height_array" not in st.session_state: st.session_state["x_array"] = None st.session_state["height_array"] = None if st.sidebar.button("Generate New Random Pile"): x_array, height_array = generate_random_pile( num_points=num_points, max_height=max_height, noise=noise_level ) st.session_state["x_array"] = x_array st.session_state["height_array"] = height_array # If we have data, proceed if st.session_state["x_array"] is not None and st.session_state["height_array"] is not None: x_array = st.session_state["x_array"] height_array = st.session_state["height_array"] # Simulate sensor readings sensor_positions, sensor_heights = simulate_sensor_readings( x_array, height_array, sensor_type, num_sensors ) # Estimate peak height from sensor approx_peak = estimate_peak_height(sensor_positions, sensor_heights) # Estimate volume volume_est = estimate_volume(x_array, height_array, silo_width, silo_depth) st.subheader("1) Silo Cross-Section Visualization") fig_pile = plot_pile_shape(x_array, height_array, sensor_positions, sensor_heights) st.pyplot(fig_pile) # Show measured peak height col1, col2 = st.columns(2) with col1: st.markdown(f"**Approx Peak Height (from sensors):** `{approx_peak:.2f} m`") st.progress(min(approx_peak/max_height, 1.0)) with col2: st.markdown(f"**Estimated Volume:** `{volume_est:.2f} m³`") st.progress(min(volume_est/((max_height*silo_width*silo_depth)), 1.0)) st.subheader("2) Sensor Data Overview") col3, col4 = st.columns(2) with col3: # Show bar chart of sensor readings fig_bars = plot_sensor_bar(sensor_positions, sensor_heights) st.pyplot(fig_bars) with col4: st.write("### Sensor Data Table") table_data = { "Position (norm)": [f"{pos:.2f}" for pos in sensor_positions], "Height (m)": [f"{h:.2f}" for h in sensor_heights] } st.table(table_data) st.markdown("---") st.markdown(""" ### Interpretation & Industry 4.0 Connection - **Digital Twins**: This simulation mimics how a *digital twin* of the silo tracks wood-chip heights. The real system could have *LiDAR* sensors scanning or an array of *ultrasonic* sensors measuring the pile at intervals. - **Data-Driven Insights**: Automated volume estimation helps production planning, ensuring continuous supply for **paperboard** manufacturing while minimizing waste or silo overflow. - **ITC PSPD**: As a leading division in paper & packaging, adopting *Industry 4.0* solutions supports sustainability and operational efficiency—aligned with ITC’s triple bottom line. - **Big Data & AI**: If multiple silos or sites feed data into a cloud platform, advanced analytics/predictive models can optimize inventory or detect anomalies. --- """) else: st.info("Use the **sidebar** to generate a new random pile and view the results.") st.markdown(""" ## Made By: - Name: Kaustubh Raykar - PRN: 21070126048 - Btech AIML 2021-25 - Contact: +91 7020524609 - Symbiosis Institute Of Technology, Pune - kaustubh.raykar.btech2021@sitpune.edu.in - raykarkaustubh@gmail.com **Thank you** for exploring this Wood Chip Silo Demo for **ITC PSPD**. """)