hanser-Bert-VITS2 / text /cleaner.py
Roi Feng
new 2.2
2e9bf0c
raw
history blame
890 Bytes
from text import chinese, japanese, english, cleaned_text_to_sequence
language_module_map = {"ZH": chinese, "JP": japanese, "EN": english}
def clean_text(text, language):
language_module = language_module_map[language]
norm_text = language_module.text_normalize(text)
phones, tones, word2ph = language_module.g2p(norm_text)
return norm_text, phones, tones, word2ph
def clean_text_bert(text, language):
language_module = language_module_map[language]
norm_text = language_module.text_normalize(text)
phones, tones, word2ph = language_module.g2p(norm_text)
bert = language_module.get_bert_feature(norm_text, word2ph)
return phones, tones, bert
def text_to_sequence(text, language):
norm_text, phones, tones, word2ph = clean_text(text, language)
return cleaned_text_to_sequence(phones, tones, language)
if __name__ == "__main__":
pass