Spaces:
Build error
Build error
import os | |
import glob | |
import argparse | |
import logging | |
import json | |
import shutil | |
import subprocess | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
from scipy.io.wavfile import read | |
import torch | |
import re | |
MATPLOTLIB_FLAG = False | |
logger = logging.getLogger(__name__) | |
def download_emo_models(mirror, repo_id, model_name): | |
if mirror == "openi": | |
import openi | |
openi.model.download_model( | |
"Stardust_minus/Bert-VITS2", | |
repo_id.split("/")[-1], | |
"./emotional", | |
) | |
else: | |
hf_hub_download( | |
repo_id, | |
"pytorch_model.bin", | |
local_dir=model_name, | |
local_dir_use_symlinks=False, | |
) | |
def download_checkpoint( | |
dir_path, repo_config, token=None, regex="G_*.pth", mirror="openi" | |
): | |
repo_id = repo_config["repo_id"] | |
f_list = glob.glob(os.path.join(dir_path, regex)) | |
if f_list: | |
print("Use existed model, skip downloading.") | |
return | |
if mirror.lower() == "openi": | |
import openi | |
kwargs = {"token": token} if token else {} | |
openi.login(**kwargs) | |
model_image = repo_config["model_image"] | |
openi.model.download_model(repo_id, model_image, dir_path) | |
fs = glob.glob(os.path.join(dir_path, model_image, "*.pth")) | |
for file in fs: | |
shutil.move(file, dir_path) | |
shutil.rmtree(os.path.join(dir_path, model_image)) | |
else: | |
for file in ["DUR_0.pth", "D_0.pth", "G_0.pth"]: | |
hf_hub_download( | |
repo_id, file, local_dir=dir_path, local_dir_use_symlinks=False | |
) | |
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False): | |
assert os.path.isfile(checkpoint_path) | |
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
iteration = checkpoint_dict["iteration"] | |
learning_rate = checkpoint_dict["learning_rate"] | |
if ( | |
optimizer is not None | |
and not skip_optimizer | |
and checkpoint_dict["optimizer"] is not None | |
): | |
optimizer.load_state_dict(checkpoint_dict["optimizer"]) | |
elif optimizer is None and not skip_optimizer: | |
# else: Disable this line if Infer and resume checkpoint,then enable the line upper | |
new_opt_dict = optimizer.state_dict() | |
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"] | |
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"] | |
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params | |
optimizer.load_state_dict(new_opt_dict) | |
saved_state_dict = checkpoint_dict["model"] | |
if hasattr(model, "module"): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
try: | |
# assert "emb_g" not in k | |
new_state_dict[k] = saved_state_dict[k] | |
assert saved_state_dict[k].shape == v.shape, ( | |
saved_state_dict[k].shape, | |
v.shape, | |
) | |
except: | |
# For upgrading from the old version | |
if "ja_bert_proj" in k: | |
v = torch.zeros_like(v) | |
logger.warn( | |
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility" | |
) | |
else: | |
logger.error(f"{k} is not in the checkpoint") | |
new_state_dict[k] = v | |
if hasattr(model, "module"): | |
model.module.load_state_dict(new_state_dict, strict=False) | |
else: | |
model.load_state_dict(new_state_dict, strict=False) | |
logger.info( | |
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration) | |
) | |
return model, optimizer, learning_rate, iteration | |
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
logger.info( | |
"Saving model and optimizer state at iteration {} to {}".format( | |
iteration, checkpoint_path | |
) | |
) | |
if hasattr(model, "module"): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
torch.save( | |
{ | |
"model": state_dict, | |
"iteration": iteration, | |
"optimizer": optimizer.state_dict(), | |
"learning_rate": learning_rate, | |
}, | |
checkpoint_path, | |
) | |
def summarize( | |
writer, | |
global_step, | |
scalars={}, | |
histograms={}, | |
images={}, | |
audios={}, | |
audio_sampling_rate=22050, | |
): | |
for k, v in scalars.items(): | |
writer.add_scalar(k, v, global_step) | |
for k, v in histograms.items(): | |
writer.add_histogram(k, v, global_step) | |
for k, v in images.items(): | |
writer.add_image(k, v, global_step, dataformats="HWC") | |
for k, v in audios.items(): | |
writer.add_audio(k, v, global_step, audio_sampling_rate) | |
def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
f_list = glob.glob(os.path.join(dir_path, regex)) | |
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) | |
x = f_list[-1] | |
return x | |
def plot_spectrogram_to_numpy(spectrogram): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
import matplotlib | |
matplotlib.use("Agg") | |
MATPLOTLIB_FLAG = True | |
mpl_logger = logging.getLogger("matplotlib") | |
mpl_logger.setLevel(logging.WARNING) | |
import matplotlib.pylab as plt | |
import numpy as np | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
plt.colorbar(im, ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def plot_alignment_to_numpy(alignment, info=None): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
import matplotlib | |
matplotlib.use("Agg") | |
MATPLOTLIB_FLAG = True | |
mpl_logger = logging.getLogger("matplotlib") | |
mpl_logger.setLevel(logging.WARNING) | |
import matplotlib.pylab as plt | |
import numpy as np | |
fig, ax = plt.subplots(figsize=(6, 4)) | |
im = ax.imshow( | |
alignment.transpose(), aspect="auto", origin="lower", interpolation="none" | |
) | |
fig.colorbar(im, ax=ax) | |
xlabel = "Decoder timestep" | |
if info is not None: | |
xlabel += "\n\n" + info | |
plt.xlabel(xlabel) | |
plt.ylabel("Encoder timestep") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def load_wav_to_torch(full_path): | |
sampling_rate, data = read(full_path) | |
return torch.FloatTensor(data.astype(np.float32)), sampling_rate | |
def load_filepaths_and_text(filename, split="|"): | |
with open(filename, encoding="utf-8") as f: | |
filepaths_and_text = [line.strip().split(split) for line in f] | |
return filepaths_and_text | |
def get_hparams(init=True): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-c", | |
"--config", | |
type=str, | |
default="./configs/base.json", | |
help="JSON file for configuration", | |
) | |
parser.add_argument("-m", "--model", type=str, required=True, help="Model name") | |
args = parser.parse_args() | |
model_dir = os.path.join("./logs", args.model) | |
if not os.path.exists(model_dir): | |
os.makedirs(model_dir) | |
config_path = args.config | |
config_save_path = os.path.join(model_dir, "config.json") | |
if init: | |
with open(config_path, "r", encoding="utf-8") as f: | |
data = f.read() | |
with open(config_save_path, "w", encoding="utf-8") as f: | |
f.write(data) | |
else: | |
with open(config_save_path, "r", vencoding="utf-8") as f: | |
data = f.read() | |
config = json.loads(data) | |
hparams = HParams(**config) | |
hparams.model_dir = model_dir | |
return hparams | |
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True): | |
"""Freeing up space by deleting saved ckpts | |
Arguments: | |
path_to_models -- Path to the model directory | |
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth | |
sort_by_time -- True -> chronologically delete ckpts | |
False -> lexicographically delete ckpts | |
""" | |
import re | |
ckpts_files = [ | |
f | |
for f in os.listdir(path_to_models) | |
if os.path.isfile(os.path.join(path_to_models, f)) | |
] | |
def name_key(_f): | |
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1)) | |
def time_key(_f): | |
return os.path.getmtime(os.path.join(path_to_models, _f)) | |
sort_key = time_key if sort_by_time else name_key | |
def x_sorted(_x): | |
return sorted( | |
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")], | |
key=sort_key, | |
) | |
to_del = [ | |
os.path.join(path_to_models, fn) | |
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep]) | |
] | |
def del_info(fn): | |
return logger.info(f".. Free up space by deleting ckpt {fn}") | |
def del_routine(x): | |
return [os.remove(x), del_info(x)] | |
[del_routine(fn) for fn in to_del] | |
def get_hparams_from_dir(model_dir): | |
config_save_path = os.path.join(model_dir, "config.json") | |
with open(config_save_path, "r", encoding="utf-8") as f: | |
data = f.read() | |
config = json.loads(data) | |
hparams = HParams(**config) | |
hparams.model_dir = model_dir | |
return hparams | |
def get_hparams_from_file(config_path): | |
# print("config_path: ", config_path) | |
with open(config_path, "r", encoding="utf-8") as f: | |
data = f.read() | |
config = json.loads(data) | |
hparams = HParams(**config) | |
return hparams | |
def check_git_hash(model_dir): | |
source_dir = os.path.dirname(os.path.realpath(__file__)) | |
if not os.path.exists(os.path.join(source_dir, ".git")): | |
logger.warn( | |
"{} is not a git repository, therefore hash value comparison will be ignored.".format( | |
source_dir | |
) | |
) | |
return | |
cur_hash = subprocess.getoutput("git rev-parse HEAD") | |
path = os.path.join(model_dir, "githash") | |
if os.path.exists(path): | |
saved_hash = open(path).read() | |
if saved_hash != cur_hash: | |
logger.warn( | |
"git hash values are different. {}(saved) != {}(current)".format( | |
saved_hash[:8], cur_hash[:8] | |
) | |
) | |
else: | |
open(path, "w").write(cur_hash) | |
def get_logger(model_dir, filename="train.log"): | |
global logger | |
logger = logging.getLogger(os.path.basename(model_dir)) | |
logger.setLevel(logging.DEBUG) | |
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") | |
if not os.path.exists(model_dir): | |
os.makedirs(model_dir) | |
h = logging.FileHandler(os.path.join(model_dir, filename)) | |
h.setLevel(logging.DEBUG) | |
h.setFormatter(formatter) | |
logger.addHandler(h) | |
return logger | |
class HParams: | |
def __init__(self, **kwargs): | |
for k, v in kwargs.items(): | |
if type(v) == dict: | |
v = HParams(**v) | |
self[k] = v | |
def keys(self): | |
return self.__dict__.keys() | |
def items(self): | |
return self.__dict__.items() | |
def values(self): | |
return self.__dict__.values() | |
def __len__(self): | |
return len(self.__dict__) | |
def __getitem__(self, key): | |
return getattr(self, key) | |
def __setitem__(self, key, value): | |
return setattr(self, key, value) | |
def __contains__(self, key): | |
return key in self.__dict__ | |
def __repr__(self): | |
return self.__dict__.__repr__() | |
def load_model(model_path, config_path): | |
hps = get_hparams_from_file(config_path) | |
net = SynthesizerTrn( | |
# len(symbols), | |
108, | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to("cpu") | |
_ = net.eval() | |
_ = load_checkpoint(model_path, net, None, skip_optimizer=True) | |
return net | |
def mix_model( | |
network1, network2, output_path, voice_ratio=(0.5, 0.5), tone_ratio=(0.5, 0.5) | |
): | |
if hasattr(network1, "module"): | |
state_dict1 = network1.module.state_dict() | |
state_dict2 = network2.module.state_dict() | |
else: | |
state_dict1 = network1.state_dict() | |
state_dict2 = network2.state_dict() | |
for k in state_dict1.keys(): | |
if k not in state_dict2.keys(): | |
continue | |
if "enc_p" in k: | |
state_dict1[k] = ( | |
state_dict1[k].clone() * tone_ratio[0] | |
+ state_dict2[k].clone() * tone_ratio[1] | |
) | |
else: | |
state_dict1[k] = ( | |
state_dict1[k].clone() * voice_ratio[0] | |
+ state_dict2[k].clone() * voice_ratio[1] | |
) | |
for k in state_dict2.keys(): | |
if k not in state_dict1.keys(): | |
state_dict1[k] = state_dict2[k].clone() | |
torch.save( | |
{"model": state_dict1, "iteration": 0, "optimizer": None, "learning_rate": 0}, | |
output_path, | |
) | |
def get_steps(model_path): | |
matches = re.findall(r"\d+", model_path) | |
return matches[-1] if matches else None | |