Spaces:
Build error
Build error
Roi Feng
commited on
Commit
·
e526878
1
Parent(s):
6b0bbcb
initialize hanser
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .pre-commit-config.yaml +25 -0
- LICENSE +661 -0
- README.md +1 -1
- app.py +228 -0
- attentions.py +464 -0
- bert/bert-base-japanese-v3/README.md +53 -0
- bert/bert-base-japanese-v3/config.json +19 -0
- bert/bert-base-japanese-v3/flax_model.msgpack +3 -0
- bert/bert-base-japanese-v3/pytorch_model.bin +3 -0
- bert/bert-base-japanese-v3/tf_model.h5 +3 -0
- bert/bert-base-japanese-v3/tokenizer_config.json +10 -0
- bert/bert-base-japanese-v3/vocab.txt +0 -0
- bert/chinese-roberta-wwm-ext-large/.gitattributes +9 -0
- bert/chinese-roberta-wwm-ext-large/.gitignore +1 -0
- bert/chinese-roberta-wwm-ext-large/README.md +57 -0
- bert/chinese-roberta-wwm-ext-large/added_tokens.json +1 -0
- bert/chinese-roberta-wwm-ext-large/config.json +28 -0
- bert/chinese-roberta-wwm-ext-large/flax_model.msgpack +3 -0
- bert/chinese-roberta-wwm-ext-large/pytorch_model.bin +3 -0
- bert/chinese-roberta-wwm-ext-large/special_tokens_map.json +1 -0
- bert/chinese-roberta-wwm-ext-large/tf_model.h5 +3 -0
- bert/chinese-roberta-wwm-ext-large/tokenizer.json +0 -0
- bert/chinese-roberta-wwm-ext-large/tokenizer_config.json +1 -0
- bert/chinese-roberta-wwm-ext-large/vocab.txt +0 -0
- bert_gen.py +59 -0
- commons.py +160 -0
- configs/config.json +95 -0
- data_utils.py +406 -0
- logs/hanser/G_8000.pth +3 -0
- losses.py +58 -0
- mel_processing.py +139 -0
- models.py +986 -0
- modules.py +597 -0
- monotonic_align/__init__.py +16 -0
- monotonic_align/core.py +46 -0
- preprocess_text.py +105 -0
- requirements.txt +23 -0
- resample.py +48 -0
- server.py +170 -0
- text/__init__.py +28 -0
- text/chinese.py +198 -0
- text/chinese_bert.py +100 -0
- text/cleaner.py +28 -0
- text/cmudict.rep +0 -0
- text/cmudict_cache.pickle +3 -0
- text/english.py +214 -0
- text/english_bert_mock.py +5 -0
- text/japanese.py +586 -0
- text/japanese_bert.py +38 -0
- text/opencpop-strict.txt +429 -0
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.4.0
|
4 |
+
hooks:
|
5 |
+
- id: check-yaml
|
6 |
+
- id: end-of-file-fixer
|
7 |
+
- id: trailing-whitespace
|
8 |
+
|
9 |
+
- repo: https://github.com/astral-sh/ruff-pre-commit
|
10 |
+
rev: v0.0.292
|
11 |
+
hooks:
|
12 |
+
- id: ruff
|
13 |
+
args: [ --fix ]
|
14 |
+
|
15 |
+
- repo: https://github.com/psf/black
|
16 |
+
rev: 23.9.1
|
17 |
+
hooks:
|
18 |
+
- id: black
|
19 |
+
|
20 |
+
- repo: https://github.com/codespell-project/codespell
|
21 |
+
rev: v2.2.6
|
22 |
+
hooks:
|
23 |
+
- id: codespell
|
24 |
+
files: ^.*\.(py|md|rst|yml)$
|
25 |
+
args: [-L=fro]
|
LICENSE
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 19 November 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU Affero General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works, specifically designed to ensure
|
12 |
+
cooperation with the community in the case of network server software.
|
13 |
+
|
14 |
+
The licenses for most software and other practical works are designed
|
15 |
+
to take away your freedom to share and change the works. By contrast,
|
16 |
+
our General Public Licenses are intended to guarantee your freedom to
|
17 |
+
share and change all versions of a program--to make sure it remains free
|
18 |
+
software for all its users.
|
19 |
+
|
20 |
+
When we speak of free software, we are referring to freedom, not
|
21 |
+
price. Our General Public Licenses are designed to make sure that you
|
22 |
+
have the freedom to distribute copies of free software (and charge for
|
23 |
+
them if you wish), that you receive source code or can get it if you
|
24 |
+
want it, that you can change the software or use pieces of it in new
|
25 |
+
free programs, and that you know you can do these things.
|
26 |
+
|
27 |
+
Developers that use our General Public Licenses protect your rights
|
28 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
29 |
+
you this License which gives you legal permission to copy, distribute
|
30 |
+
and/or modify the software.
|
31 |
+
|
32 |
+
A secondary benefit of defending all users' freedom is that
|
33 |
+
improvements made in alternate versions of the program, if they
|
34 |
+
receive widespread use, become available for other developers to
|
35 |
+
incorporate. Many developers of free software are heartened and
|
36 |
+
encouraged by the resulting cooperation. However, in the case of
|
37 |
+
software used on network servers, this result may fail to come about.
|
38 |
+
The GNU General Public License permits making a modified version and
|
39 |
+
letting the public access it on a server without ever releasing its
|
40 |
+
source code to the public.
|
41 |
+
|
42 |
+
The GNU Affero General Public License is designed specifically to
|
43 |
+
ensure that, in such cases, the modified source code becomes available
|
44 |
+
to the community. It requires the operator of a network server to
|
45 |
+
provide the source code of the modified version running there to the
|
46 |
+
users of that server. Therefore, public use of a modified version, on
|
47 |
+
a publicly accessible server, gives the public access to the source
|
48 |
+
code of the modified version.
|
49 |
+
|
50 |
+
An older license, called the Affero General Public License and
|
51 |
+
published by Affero, was designed to accomplish similar goals. This is
|
52 |
+
a different license, not a version of the Affero GPL, but Affero has
|
53 |
+
released a new version of the Affero GPL which permits relicensing under
|
54 |
+
this license.
|
55 |
+
|
56 |
+
The precise terms and conditions for copying, distribution and
|
57 |
+
modification follow.
|
58 |
+
|
59 |
+
TERMS AND CONDITIONS
|
60 |
+
|
61 |
+
0. Definitions.
|
62 |
+
|
63 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
64 |
+
|
65 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
66 |
+
works, such as semiconductor masks.
|
67 |
+
|
68 |
+
"The Program" refers to any copyrightable work licensed under this
|
69 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
70 |
+
"recipients" may be individuals or organizations.
|
71 |
+
|
72 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
73 |
+
in a fashion requiring copyright permission, other than the making of an
|
74 |
+
exact copy. The resulting work is called a "modified version" of the
|
75 |
+
earlier work or a work "based on" the earlier work.
|
76 |
+
|
77 |
+
A "covered work" means either the unmodified Program or a work based
|
78 |
+
on the Program.
|
79 |
+
|
80 |
+
To "propagate" a work means to do anything with it that, without
|
81 |
+
permission, would make you directly or secondarily liable for
|
82 |
+
infringement under applicable copyright law, except executing it on a
|
83 |
+
computer or modifying a private copy. Propagation includes copying,
|
84 |
+
distribution (with or without modification), making available to the
|
85 |
+
public, and in some countries other activities as well.
|
86 |
+
|
87 |
+
To "convey" a work means any kind of propagation that enables other
|
88 |
+
parties to make or receive copies. Mere interaction with a user through
|
89 |
+
a computer network, with no transfer of a copy, is not conveying.
|
90 |
+
|
91 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
92 |
+
to the extent that it includes a convenient and prominently visible
|
93 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
94 |
+
tells the user that there is no warranty for the work (except to the
|
95 |
+
extent that warranties are provided), that licensees may convey the
|
96 |
+
work under this License, and how to view a copy of this License. If
|
97 |
+
the interface presents a list of user commands or options, such as a
|
98 |
+
menu, a prominent item in the list meets this criterion.
|
99 |
+
|
100 |
+
1. Source Code.
|
101 |
+
|
102 |
+
The "source code" for a work means the preferred form of the work
|
103 |
+
for making modifications to it. "Object code" means any non-source
|
104 |
+
form of a work.
|
105 |
+
|
106 |
+
A "Standard Interface" means an interface that either is an official
|
107 |
+
standard defined by a recognized standards body, or, in the case of
|
108 |
+
interfaces specified for a particular programming language, one that
|
109 |
+
is widely used among developers working in that language.
|
110 |
+
|
111 |
+
The "System Libraries" of an executable work include anything, other
|
112 |
+
than the work as a whole, that (a) is included in the normal form of
|
113 |
+
packaging a Major Component, but which is not part of that Major
|
114 |
+
Component, and (b) serves only to enable use of the work with that
|
115 |
+
Major Component, or to implement a Standard Interface for which an
|
116 |
+
implementation is available to the public in source code form. A
|
117 |
+
"Major Component", in this context, means a major essential component
|
118 |
+
(kernel, window system, and so on) of the specific operating system
|
119 |
+
(if any) on which the executable work runs, or a compiler used to
|
120 |
+
produce the work, or an object code interpreter used to run it.
|
121 |
+
|
122 |
+
The "Corresponding Source" for a work in object code form means all
|
123 |
+
the source code needed to generate, install, and (for an executable
|
124 |
+
work) run the object code and to modify the work, including scripts to
|
125 |
+
control those activities. However, it does not include the work's
|
126 |
+
System Libraries, or general-purpose tools or generally available free
|
127 |
+
programs which are used unmodified in performing those activities but
|
128 |
+
which are not part of the work. For example, Corresponding Source
|
129 |
+
includes interface definition files associated with source files for
|
130 |
+
the work, and the source code for shared libraries and dynamically
|
131 |
+
linked subprograms that the work is specifically designed to require,
|
132 |
+
such as by intimate data communication or control flow between those
|
133 |
+
subprograms and other parts of the work.
|
134 |
+
|
135 |
+
The Corresponding Source need not include anything that users
|
136 |
+
can regenerate automatically from other parts of the Corresponding
|
137 |
+
Source.
|
138 |
+
|
139 |
+
The Corresponding Source for a work in source code form is that
|
140 |
+
same work.
|
141 |
+
|
142 |
+
2. Basic Permissions.
|
143 |
+
|
144 |
+
All rights granted under this License are granted for the term of
|
145 |
+
copyright on the Program, and are irrevocable provided the stated
|
146 |
+
conditions are met. This License explicitly affirms your unlimited
|
147 |
+
permission to run the unmodified Program. The output from running a
|
148 |
+
covered work is covered by this License only if the output, given its
|
149 |
+
content, constitutes a covered work. This License acknowledges your
|
150 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
151 |
+
|
152 |
+
You may make, run and propagate covered works that you do not
|
153 |
+
convey, without conditions so long as your license otherwise remains
|
154 |
+
in force. You may convey covered works to others for the sole purpose
|
155 |
+
of having them make modifications exclusively for you, or provide you
|
156 |
+
with facilities for running those works, provided that you comply with
|
157 |
+
the terms of this License in conveying all material for which you do
|
158 |
+
not control copyright. Those thus making or running the covered works
|
159 |
+
for you must do so exclusively on your behalf, under your direction
|
160 |
+
and control, on terms that prohibit them from making any copies of
|
161 |
+
your copyrighted material outside their relationship with you.
|
162 |
+
|
163 |
+
Conveying under any other circumstances is permitted solely under
|
164 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
165 |
+
makes it unnecessary.
|
166 |
+
|
167 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
168 |
+
|
169 |
+
No covered work shall be deemed part of an effective technological
|
170 |
+
measure under any applicable law fulfilling obligations under article
|
171 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
172 |
+
similar laws prohibiting or restricting circumvention of such
|
173 |
+
measures.
|
174 |
+
|
175 |
+
When you convey a covered work, you waive any legal power to forbid
|
176 |
+
circumvention of technological measures to the extent such circumvention
|
177 |
+
is effected by exercising rights under this License with respect to
|
178 |
+
the covered work, and you disclaim any intention to limit operation or
|
179 |
+
modification of the work as a means of enforcing, against the work's
|
180 |
+
users, your or third parties' legal rights to forbid circumvention of
|
181 |
+
technological measures.
|
182 |
+
|
183 |
+
4. Conveying Verbatim Copies.
|
184 |
+
|
185 |
+
You may convey verbatim copies of the Program's source code as you
|
186 |
+
receive it, in any medium, provided that you conspicuously and
|
187 |
+
appropriately publish on each copy an appropriate copyright notice;
|
188 |
+
keep intact all notices stating that this License and any
|
189 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
190 |
+
keep intact all notices of the absence of any warranty; and give all
|
191 |
+
recipients a copy of this License along with the Program.
|
192 |
+
|
193 |
+
You may charge any price or no price for each copy that you convey,
|
194 |
+
and you may offer support or warranty protection for a fee.
|
195 |
+
|
196 |
+
5. Conveying Modified Source Versions.
|
197 |
+
|
198 |
+
You may convey a work based on the Program, or the modifications to
|
199 |
+
produce it from the Program, in the form of source code under the
|
200 |
+
terms of section 4, provided that you also meet all of these conditions:
|
201 |
+
|
202 |
+
a) The work must carry prominent notices stating that you modified
|
203 |
+
it, and giving a relevant date.
|
204 |
+
|
205 |
+
b) The work must carry prominent notices stating that it is
|
206 |
+
released under this License and any conditions added under section
|
207 |
+
7. This requirement modifies the requirement in section 4 to
|
208 |
+
"keep intact all notices".
|
209 |
+
|
210 |
+
c) You must license the entire work, as a whole, under this
|
211 |
+
License to anyone who comes into possession of a copy. This
|
212 |
+
License will therefore apply, along with any applicable section 7
|
213 |
+
additional terms, to the whole of the work, and all its parts,
|
214 |
+
regardless of how they are packaged. This License gives no
|
215 |
+
permission to license the work in any other way, but it does not
|
216 |
+
invalidate such permission if you have separately received it.
|
217 |
+
|
218 |
+
d) If the work has interactive user interfaces, each must display
|
219 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
220 |
+
interfaces that do not display Appropriate Legal Notices, your
|
221 |
+
work need not make them do so.
|
222 |
+
|
223 |
+
A compilation of a covered work with other separate and independent
|
224 |
+
works, which are not by their nature extensions of the covered work,
|
225 |
+
and which are not combined with it such as to form a larger program,
|
226 |
+
in or on a volume of a storage or distribution medium, is called an
|
227 |
+
"aggregate" if the compilation and its resulting copyright are not
|
228 |
+
used to limit the access or legal rights of the compilation's users
|
229 |
+
beyond what the individual works permit. Inclusion of a covered work
|
230 |
+
in an aggregate does not cause this License to apply to the other
|
231 |
+
parts of the aggregate.
|
232 |
+
|
233 |
+
6. Conveying Non-Source Forms.
|
234 |
+
|
235 |
+
You may convey a covered work in object code form under the terms
|
236 |
+
of sections 4 and 5, provided that you also convey the
|
237 |
+
machine-readable Corresponding Source under the terms of this License,
|
238 |
+
in one of these ways:
|
239 |
+
|
240 |
+
a) Convey the object code in, or embodied in, a physical product
|
241 |
+
(including a physical distribution medium), accompanied by the
|
242 |
+
Corresponding Source fixed on a durable physical medium
|
243 |
+
customarily used for software interchange.
|
244 |
+
|
245 |
+
b) Convey the object code in, or embodied in, a physical product
|
246 |
+
(including a physical distribution medium), accompanied by a
|
247 |
+
written offer, valid for at least three years and valid for as
|
248 |
+
long as you offer spare parts or customer support for that product
|
249 |
+
model, to give anyone who possesses the object code either (1) a
|
250 |
+
copy of the Corresponding Source for all the software in the
|
251 |
+
product that is covered by this License, on a durable physical
|
252 |
+
medium customarily used for software interchange, for a price no
|
253 |
+
more than your reasonable cost of physically performing this
|
254 |
+
conveying of source, or (2) access to copy the
|
255 |
+
Corresponding Source from a network server at no charge.
|
256 |
+
|
257 |
+
c) Convey individual copies of the object code with a copy of the
|
258 |
+
written offer to provide the Corresponding Source. This
|
259 |
+
alternative is allowed only occasionally and noncommercially, and
|
260 |
+
only if you received the object code with such an offer, in accord
|
261 |
+
with subsection 6b.
|
262 |
+
|
263 |
+
d) Convey the object code by offering access from a designated
|
264 |
+
place (gratis or for a charge), and offer equivalent access to the
|
265 |
+
Corresponding Source in the same way through the same place at no
|
266 |
+
further charge. You need not require recipients to copy the
|
267 |
+
Corresponding Source along with the object code. If the place to
|
268 |
+
copy the object code is a network server, the Corresponding Source
|
269 |
+
may be on a different server (operated by you or a third party)
|
270 |
+
that supports equivalent copying facilities, provided you maintain
|
271 |
+
clear directions next to the object code saying where to find the
|
272 |
+
Corresponding Source. Regardless of what server hosts the
|
273 |
+
Corresponding Source, you remain obligated to ensure that it is
|
274 |
+
available for as long as needed to satisfy these requirements.
|
275 |
+
|
276 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
277 |
+
you inform other peers where the object code and Corresponding
|
278 |
+
Source of the work are being offered to the general public at no
|
279 |
+
charge under subsection 6d.
|
280 |
+
|
281 |
+
A separable portion of the object code, whose source code is excluded
|
282 |
+
from the Corresponding Source as a System Library, need not be
|
283 |
+
included in conveying the object code work.
|
284 |
+
|
285 |
+
A "User Product" is either (1) a "consumer product", which means any
|
286 |
+
tangible personal property which is normally used for personal, family,
|
287 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
288 |
+
into a dwelling. In determining whether a product is a consumer product,
|
289 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
290 |
+
product received by a particular user, "normally used" refers to a
|
291 |
+
typical or common use of that class of product, regardless of the status
|
292 |
+
of the particular user or of the way in which the particular user
|
293 |
+
actually uses, or expects or is expected to use, the product. A product
|
294 |
+
is a consumer product regardless of whether the product has substantial
|
295 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
296 |
+
the only significant mode of use of the product.
|
297 |
+
|
298 |
+
"Installation Information" for a User Product means any methods,
|
299 |
+
procedures, authorization keys, or other information required to install
|
300 |
+
and execute modified versions of a covered work in that User Product from
|
301 |
+
a modified version of its Corresponding Source. The information must
|
302 |
+
suffice to ensure that the continued functioning of the modified object
|
303 |
+
code is in no case prevented or interfered with solely because
|
304 |
+
modification has been made.
|
305 |
+
|
306 |
+
If you convey an object code work under this section in, or with, or
|
307 |
+
specifically for use in, a User Product, and the conveying occurs as
|
308 |
+
part of a transaction in which the right of possession and use of the
|
309 |
+
User Product is transferred to the recipient in perpetuity or for a
|
310 |
+
fixed term (regardless of how the transaction is characterized), the
|
311 |
+
Corresponding Source conveyed under this section must be accompanied
|
312 |
+
by the Installation Information. But this requirement does not apply
|
313 |
+
if neither you nor any third party retains the ability to install
|
314 |
+
modified object code on the User Product (for example, the work has
|
315 |
+
been installed in ROM).
|
316 |
+
|
317 |
+
The requirement to provide Installation Information does not include a
|
318 |
+
requirement to continue to provide support service, warranty, or updates
|
319 |
+
for a work that has been modified or installed by the recipient, or for
|
320 |
+
the User Product in which it has been modified or installed. Access to a
|
321 |
+
network may be denied when the modification itself materially and
|
322 |
+
adversely affects the operation of the network or violates the rules and
|
323 |
+
protocols for communication across the network.
|
324 |
+
|
325 |
+
Corresponding Source conveyed, and Installation Information provided,
|
326 |
+
in accord with this section must be in a format that is publicly
|
327 |
+
documented (and with an implementation available to the public in
|
328 |
+
source code form), and must require no special password or key for
|
329 |
+
unpacking, reading or copying.
|
330 |
+
|
331 |
+
7. Additional Terms.
|
332 |
+
|
333 |
+
"Additional permissions" are terms that supplement the terms of this
|
334 |
+
License by making exceptions from one or more of its conditions.
|
335 |
+
Additional permissions that are applicable to the entire Program shall
|
336 |
+
be treated as though they were included in this License, to the extent
|
337 |
+
that they are valid under applicable law. If additional permissions
|
338 |
+
apply only to part of the Program, that part may be used separately
|
339 |
+
under those permissions, but the entire Program remains governed by
|
340 |
+
this License without regard to the additional permissions.
|
341 |
+
|
342 |
+
When you convey a copy of a covered work, you may at your option
|
343 |
+
remove any additional permissions from that copy, or from any part of
|
344 |
+
it. (Additional permissions may be written to require their own
|
345 |
+
removal in certain cases when you modify the work.) You may place
|
346 |
+
additional permissions on material, added by you to a covered work,
|
347 |
+
for which you have or can give appropriate copyright permission.
|
348 |
+
|
349 |
+
Notwithstanding any other provision of this License, for material you
|
350 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
351 |
+
that material) supplement the terms of this License with terms:
|
352 |
+
|
353 |
+
a) Disclaiming warranty or limiting liability differently from the
|
354 |
+
terms of sections 15 and 16 of this License; or
|
355 |
+
|
356 |
+
b) Requiring preservation of specified reasonable legal notices or
|
357 |
+
author attributions in that material or in the Appropriate Legal
|
358 |
+
Notices displayed by works containing it; or
|
359 |
+
|
360 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
361 |
+
requiring that modified versions of such material be marked in
|
362 |
+
reasonable ways as different from the original version; or
|
363 |
+
|
364 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
365 |
+
authors of the material; or
|
366 |
+
|
367 |
+
e) Declining to grant rights under trademark law for use of some
|
368 |
+
trade names, trademarks, or service marks; or
|
369 |
+
|
370 |
+
f) Requiring indemnification of licensors and authors of that
|
371 |
+
material by anyone who conveys the material (or modified versions of
|
372 |
+
it) with contractual assumptions of liability to the recipient, for
|
373 |
+
any liability that these contractual assumptions directly impose on
|
374 |
+
those licensors and authors.
|
375 |
+
|
376 |
+
All other non-permissive additional terms are considered "further
|
377 |
+
restrictions" within the meaning of section 10. If the Program as you
|
378 |
+
received it, or any part of it, contains a notice stating that it is
|
379 |
+
governed by this License along with a term that is a further
|
380 |
+
restriction, you may remove that term. If a license document contains
|
381 |
+
a further restriction but permits relicensing or conveying under this
|
382 |
+
License, you may add to a covered work material governed by the terms
|
383 |
+
of that license document, provided that the further restriction does
|
384 |
+
not survive such relicensing or conveying.
|
385 |
+
|
386 |
+
If you add terms to a covered work in accord with this section, you
|
387 |
+
must place, in the relevant source files, a statement of the
|
388 |
+
additional terms that apply to those files, or a notice indicating
|
389 |
+
where to find the applicable terms.
|
390 |
+
|
391 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
392 |
+
form of a separately written license, or stated as exceptions;
|
393 |
+
the above requirements apply either way.
|
394 |
+
|
395 |
+
8. Termination.
|
396 |
+
|
397 |
+
You may not propagate or modify a covered work except as expressly
|
398 |
+
provided under this License. Any attempt otherwise to propagate or
|
399 |
+
modify it is void, and will automatically terminate your rights under
|
400 |
+
this License (including any patent licenses granted under the third
|
401 |
+
paragraph of section 11).
|
402 |
+
|
403 |
+
However, if you cease all violation of this License, then your
|
404 |
+
license from a particular copyright holder is reinstated (a)
|
405 |
+
provisionally, unless and until the copyright holder explicitly and
|
406 |
+
finally terminates your license, and (b) permanently, if the copyright
|
407 |
+
holder fails to notify you of the violation by some reasonable means
|
408 |
+
prior to 60 days after the cessation.
|
409 |
+
|
410 |
+
Moreover, your license from a particular copyright holder is
|
411 |
+
reinstated permanently if the copyright holder notifies you of the
|
412 |
+
violation by some reasonable means, this is the first time you have
|
413 |
+
received notice of violation of this License (for any work) from that
|
414 |
+
copyright holder, and you cure the violation prior to 30 days after
|
415 |
+
your receipt of the notice.
|
416 |
+
|
417 |
+
Termination of your rights under this section does not terminate the
|
418 |
+
licenses of parties who have received copies or rights from you under
|
419 |
+
this License. If your rights have been terminated and not permanently
|
420 |
+
reinstated, you do not qualify to receive new licenses for the same
|
421 |
+
material under section 10.
|
422 |
+
|
423 |
+
9. Acceptance Not Required for Having Copies.
|
424 |
+
|
425 |
+
You are not required to accept this License in order to receive or
|
426 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
427 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
428 |
+
to receive a copy likewise does not require acceptance. However,
|
429 |
+
nothing other than this License grants you permission to propagate or
|
430 |
+
modify any covered work. These actions infringe copyright if you do
|
431 |
+
not accept this License. Therefore, by modifying or propagating a
|
432 |
+
covered work, you indicate your acceptance of this License to do so.
|
433 |
+
|
434 |
+
10. Automatic Licensing of Downstream Recipients.
|
435 |
+
|
436 |
+
Each time you convey a covered work, the recipient automatically
|
437 |
+
receives a license from the original licensors, to run, modify and
|
438 |
+
propagate that work, subject to this License. You are not responsible
|
439 |
+
for enforcing compliance by third parties with this License.
|
440 |
+
|
441 |
+
An "entity transaction" is a transaction transferring control of an
|
442 |
+
organization, or substantially all assets of one, or subdividing an
|
443 |
+
organization, or merging organizations. If propagation of a covered
|
444 |
+
work results from an entity transaction, each party to that
|
445 |
+
transaction who receives a copy of the work also receives whatever
|
446 |
+
licenses to the work the party's predecessor in interest had or could
|
447 |
+
give under the previous paragraph, plus a right to possession of the
|
448 |
+
Corresponding Source of the work from the predecessor in interest, if
|
449 |
+
the predecessor has it or can get it with reasonable efforts.
|
450 |
+
|
451 |
+
You may not impose any further restrictions on the exercise of the
|
452 |
+
rights granted or affirmed under this License. For example, you may
|
453 |
+
not impose a license fee, royalty, or other charge for exercise of
|
454 |
+
rights granted under this License, and you may not initiate litigation
|
455 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
456 |
+
any patent claim is infringed by making, using, selling, offering for
|
457 |
+
sale, or importing the Program or any portion of it.
|
458 |
+
|
459 |
+
11. Patents.
|
460 |
+
|
461 |
+
A "contributor" is a copyright holder who authorizes use under this
|
462 |
+
License of the Program or a work on which the Program is based. The
|
463 |
+
work thus licensed is called the contributor's "contributor version".
|
464 |
+
|
465 |
+
A contributor's "essential patent claims" are all patent claims
|
466 |
+
owned or controlled by the contributor, whether already acquired or
|
467 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
468 |
+
by this License, of making, using, or selling its contributor version,
|
469 |
+
but do not include claims that would be infringed only as a
|
470 |
+
consequence of further modification of the contributor version. For
|
471 |
+
purposes of this definition, "control" includes the right to grant
|
472 |
+
patent sublicenses in a manner consistent with the requirements of
|
473 |
+
this License.
|
474 |
+
|
475 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
476 |
+
patent license under the contributor's essential patent claims, to
|
477 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
478 |
+
propagate the contents of its contributor version.
|
479 |
+
|
480 |
+
In the following three paragraphs, a "patent license" is any express
|
481 |
+
agreement or commitment, however denominated, not to enforce a patent
|
482 |
+
(such as an express permission to practice a patent or covenant not to
|
483 |
+
sue for patent infringement). To "grant" such a patent license to a
|
484 |
+
party means to make such an agreement or commitment not to enforce a
|
485 |
+
patent against the party.
|
486 |
+
|
487 |
+
If you convey a covered work, knowingly relying on a patent license,
|
488 |
+
and the Corresponding Source of the work is not available for anyone
|
489 |
+
to copy, free of charge and under the terms of this License, through a
|
490 |
+
publicly available network server or other readily accessible means,
|
491 |
+
then you must either (1) cause the Corresponding Source to be so
|
492 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
493 |
+
patent license for this particular work, or (3) arrange, in a manner
|
494 |
+
consistent with the requirements of this License, to extend the patent
|
495 |
+
license to downstream recipients. "Knowingly relying" means you have
|
496 |
+
actual knowledge that, but for the patent license, your conveying the
|
497 |
+
covered work in a country, or your recipient's use of the covered work
|
498 |
+
in a country, would infringe one or more identifiable patents in that
|
499 |
+
country that you have reason to believe are valid.
|
500 |
+
|
501 |
+
If, pursuant to or in connection with a single transaction or
|
502 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
503 |
+
covered work, and grant a patent license to some of the parties
|
504 |
+
receiving the covered work authorizing them to use, propagate, modify
|
505 |
+
or convey a specific copy of the covered work, then the patent license
|
506 |
+
you grant is automatically extended to all recipients of the covered
|
507 |
+
work and works based on it.
|
508 |
+
|
509 |
+
A patent license is "discriminatory" if it does not include within
|
510 |
+
the scope of its coverage, prohibits the exercise of, or is
|
511 |
+
conditioned on the non-exercise of one or more of the rights that are
|
512 |
+
specifically granted under this License. You may not convey a covered
|
513 |
+
work if you are a party to an arrangement with a third party that is
|
514 |
+
in the business of distributing software, under which you make payment
|
515 |
+
to the third party based on the extent of your activity of conveying
|
516 |
+
the work, and under which the third party grants, to any of the
|
517 |
+
parties who would receive the covered work from you, a discriminatory
|
518 |
+
patent license (a) in connection with copies of the covered work
|
519 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
520 |
+
for and in connection with specific products or compilations that
|
521 |
+
contain the covered work, unless you entered into that arrangement,
|
522 |
+
or that patent license was granted, prior to 28 March 2007.
|
523 |
+
|
524 |
+
Nothing in this License shall be construed as excluding or limiting
|
525 |
+
any implied license or other defenses to infringement that may
|
526 |
+
otherwise be available to you under applicable patent law.
|
527 |
+
|
528 |
+
12. No Surrender of Others' Freedom.
|
529 |
+
|
530 |
+
If conditions are imposed on you (whether by court order, agreement or
|
531 |
+
otherwise) that contradict the conditions of this License, they do not
|
532 |
+
excuse you from the conditions of this License. If you cannot convey a
|
533 |
+
covered work so as to satisfy simultaneously your obligations under this
|
534 |
+
License and any other pertinent obligations, then as a consequence you may
|
535 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
536 |
+
to collect a royalty for further conveying from those to whom you convey
|
537 |
+
the Program, the only way you could satisfy both those terms and this
|
538 |
+
License would be to refrain entirely from conveying the Program.
|
539 |
+
|
540 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
541 |
+
|
542 |
+
Notwithstanding any other provision of this License, if you modify the
|
543 |
+
Program, your modified version must prominently offer all users
|
544 |
+
interacting with it remotely through a computer network (if your version
|
545 |
+
supports such interaction) an opportunity to receive the Corresponding
|
546 |
+
Source of your version by providing access to the Corresponding Source
|
547 |
+
from a network server at no charge, through some standard or customary
|
548 |
+
means of facilitating copying of software. This Corresponding Source
|
549 |
+
shall include the Corresponding Source for any work covered by version 3
|
550 |
+
of the GNU General Public License that is incorporated pursuant to the
|
551 |
+
following paragraph.
|
552 |
+
|
553 |
+
Notwithstanding any other provision of this License, you have
|
554 |
+
permission to link or combine any covered work with a work licensed
|
555 |
+
under version 3 of the GNU General Public License into a single
|
556 |
+
combined work, and to convey the resulting work. The terms of this
|
557 |
+
License will continue to apply to the part which is the covered work,
|
558 |
+
but the work with which it is combined will remain governed by version
|
559 |
+
3 of the GNU General Public License.
|
560 |
+
|
561 |
+
14. Revised Versions of this License.
|
562 |
+
|
563 |
+
The Free Software Foundation may publish revised and/or new versions of
|
564 |
+
the GNU Affero General Public License from time to time. Such new versions
|
565 |
+
will be similar in spirit to the present version, but may differ in detail to
|
566 |
+
address new problems or concerns.
|
567 |
+
|
568 |
+
Each version is given a distinguishing version number. If the
|
569 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
570 |
+
Public License "or any later version" applies to it, you have the
|
571 |
+
option of following the terms and conditions either of that numbered
|
572 |
+
version or of any later version published by the Free Software
|
573 |
+
Foundation. If the Program does not specify a version number of the
|
574 |
+
GNU Affero General Public License, you may choose any version ever published
|
575 |
+
by the Free Software Foundation.
|
576 |
+
|
577 |
+
If the Program specifies that a proxy can decide which future
|
578 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
579 |
+
public statement of acceptance of a version permanently authorizes you
|
580 |
+
to choose that version for the Program.
|
581 |
+
|
582 |
+
Later license versions may give you additional or different
|
583 |
+
permissions. However, no additional obligations are imposed on any
|
584 |
+
author or copyright holder as a result of your choosing to follow a
|
585 |
+
later version.
|
586 |
+
|
587 |
+
15. Disclaimer of Warranty.
|
588 |
+
|
589 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
590 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
591 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
592 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
593 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
594 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
595 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
596 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
597 |
+
|
598 |
+
16. Limitation of Liability.
|
599 |
+
|
600 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
601 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
602 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
603 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
604 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
605 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
606 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
607 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
608 |
+
SUCH DAMAGES.
|
609 |
+
|
610 |
+
17. Interpretation of Sections 15 and 16.
|
611 |
+
|
612 |
+
If the disclaimer of warranty and limitation of liability provided
|
613 |
+
above cannot be given local legal effect according to their terms,
|
614 |
+
reviewing courts shall apply local law that most closely approximates
|
615 |
+
an absolute waiver of all civil liability in connection with the
|
616 |
+
Program, unless a warranty or assumption of liability accompanies a
|
617 |
+
copy of the Program in return for a fee.
|
618 |
+
|
619 |
+
END OF TERMS AND CONDITIONS
|
620 |
+
|
621 |
+
How to Apply These Terms to Your New Programs
|
622 |
+
|
623 |
+
If you develop a new program, and you want it to be of the greatest
|
624 |
+
possible use to the public, the best way to achieve this is to make it
|
625 |
+
free software which everyone can redistribute and change under these terms.
|
626 |
+
|
627 |
+
To do so, attach the following notices to the program. It is safest
|
628 |
+
to attach them to the start of each source file to most effectively
|
629 |
+
state the exclusion of warranty; and each file should have at least
|
630 |
+
the "copyright" line and a pointer to where the full notice is found.
|
631 |
+
|
632 |
+
<one line to give the program's name and a brief idea of what it does.>
|
633 |
+
Copyright (C) <year> <name of author>
|
634 |
+
|
635 |
+
This program is free software: you can redistribute it and/or modify
|
636 |
+
it under the terms of the GNU Affero General Public License as published
|
637 |
+
by the Free Software Foundation, either version 3 of the License, or
|
638 |
+
(at your option) any later version.
|
639 |
+
|
640 |
+
This program is distributed in the hope that it will be useful,
|
641 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
642 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
643 |
+
GNU Affero General Public License for more details.
|
644 |
+
|
645 |
+
You should have received a copy of the GNU Affero General Public License
|
646 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
647 |
+
|
648 |
+
Also add information on how to contact you by electronic and paper mail.
|
649 |
+
|
650 |
+
If your software can interact with users remotely through a computer
|
651 |
+
network, you should also make sure that it provides a way for users to
|
652 |
+
get its source. For example, if your program is a web application, its
|
653 |
+
interface could display a "Source" link that leads users to an archive
|
654 |
+
of the code. There are many ways you could offer source, and different
|
655 |
+
solutions will be better for different programs; see section 13 for the
|
656 |
+
specific requirements.
|
657 |
+
|
658 |
+
You should also get your employer (if you work as a programmer) or school,
|
659 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
660 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
661 |
+
<https://www.gnu.org/licenses/>.
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Hanser
|
3 |
emoji: 📊
|
4 |
colorFrom: yellow
|
5 |
colorTo: indigo
|
|
|
1 |
---
|
2 |
+
title: AI Hanser
|
3 |
emoji: 📊
|
4 |
colorFrom: yellow
|
5 |
colorTo: indigo
|
app.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: E402
|
2 |
+
|
3 |
+
import sys, os
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
7 |
+
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
8 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
9 |
+
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
10 |
+
|
11 |
+
logging.basicConfig(
|
12 |
+
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
|
13 |
+
)
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import argparse
|
19 |
+
import commons
|
20 |
+
import utils
|
21 |
+
from models import SynthesizerTrn
|
22 |
+
from text.symbols import symbols
|
23 |
+
from text import cleaned_text_to_sequence, get_bert
|
24 |
+
from text.cleaner import clean_text
|
25 |
+
import gradio as gr
|
26 |
+
import webbrowser
|
27 |
+
import numpy as np
|
28 |
+
|
29 |
+
net_g = None
|
30 |
+
|
31 |
+
if sys.platform == "darwin" and torch.backends.mps.is_available():
|
32 |
+
device = "mps"
|
33 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
34 |
+
else:
|
35 |
+
device = "cuda"
|
36 |
+
|
37 |
+
|
38 |
+
def get_text(text, language_str, hps):
|
39 |
+
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
40 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
41 |
+
|
42 |
+
if hps.data.add_blank:
|
43 |
+
phone = commons.intersperse(phone, 0)
|
44 |
+
tone = commons.intersperse(tone, 0)
|
45 |
+
language = commons.intersperse(language, 0)
|
46 |
+
for i in range(len(word2ph)):
|
47 |
+
word2ph[i] = word2ph[i] * 2
|
48 |
+
word2ph[0] += 1
|
49 |
+
bert = get_bert(norm_text, word2ph, language_str, device)
|
50 |
+
del word2ph
|
51 |
+
assert bert.shape[-1] == len(phone), phone
|
52 |
+
|
53 |
+
if language_str == "ZH":
|
54 |
+
bert = bert
|
55 |
+
ja_bert = torch.zeros(768, len(phone))
|
56 |
+
elif language_str == "JP":
|
57 |
+
ja_bert = bert
|
58 |
+
bert = torch.zeros(1024, len(phone))
|
59 |
+
else:
|
60 |
+
bert = torch.zeros(1024, len(phone))
|
61 |
+
ja_bert = torch.zeros(768, len(phone))
|
62 |
+
|
63 |
+
assert bert.shape[-1] == len(
|
64 |
+
phone
|
65 |
+
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
66 |
+
|
67 |
+
phone = torch.LongTensor(phone)
|
68 |
+
tone = torch.LongTensor(tone)
|
69 |
+
language = torch.LongTensor(language)
|
70 |
+
return bert, ja_bert, phone, tone, language
|
71 |
+
|
72 |
+
|
73 |
+
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
|
74 |
+
global net_g
|
75 |
+
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
|
76 |
+
with torch.no_grad():
|
77 |
+
x_tst = phones.to(device).unsqueeze(0)
|
78 |
+
tones = tones.to(device).unsqueeze(0)
|
79 |
+
lang_ids = lang_ids.to(device).unsqueeze(0)
|
80 |
+
bert = bert.to(device).unsqueeze(0)
|
81 |
+
ja_bert = ja_bert.to(device).unsqueeze(0)
|
82 |
+
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
83 |
+
del phones
|
84 |
+
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
85 |
+
audio = (
|
86 |
+
net_g.infer(
|
87 |
+
x_tst,
|
88 |
+
x_tst_lengths,
|
89 |
+
speakers,
|
90 |
+
tones,
|
91 |
+
lang_ids,
|
92 |
+
bert,
|
93 |
+
ja_bert,
|
94 |
+
sdp_ratio=sdp_ratio,
|
95 |
+
noise_scale=noise_scale,
|
96 |
+
noise_scale_w=noise_scale_w,
|
97 |
+
length_scale=length_scale,
|
98 |
+
)[0][0, 0]
|
99 |
+
.data.cpu()
|
100 |
+
.float()
|
101 |
+
.numpy()
|
102 |
+
)
|
103 |
+
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
|
104 |
+
torch.cuda.empty_cache()
|
105 |
+
return audio
|
106 |
+
|
107 |
+
|
108 |
+
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language):
|
109 |
+
slices = text.split("|")
|
110 |
+
audio_list = []
|
111 |
+
with torch.no_grad():
|
112 |
+
for slice in slices:
|
113 |
+
audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language)
|
114 |
+
audio_list.append(audio)
|
115 |
+
silence = np.zeros(hps.data.sampling_rate) # 生成1秒的静音
|
116 |
+
audio_list.append(silence) # 将静音添加到列表中
|
117 |
+
audio_concat = np.concatenate(audio_list)
|
118 |
+
return "Success", (hps.data.sampling_rate, audio_concat)
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
parser = argparse.ArgumentParser()
|
122 |
+
parser.add_argument(
|
123 |
+
"-m", "--model", default="./logs/hanser/G_8000.pth", help="path of your model"
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"-c",
|
127 |
+
"--config",
|
128 |
+
default="./configs/config.json",
|
129 |
+
help="path of your config file",
|
130 |
+
)
|
131 |
+
parser.add_argument(
|
132 |
+
"--share", default=False, help="make link public", action="store_true"
|
133 |
+
)
|
134 |
+
parser.add_argument(
|
135 |
+
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
|
136 |
+
)
|
137 |
+
|
138 |
+
args = parser.parse_args()
|
139 |
+
if args.debug:
|
140 |
+
logger.info("Enable DEBUG-LEVEL log")
|
141 |
+
logging.basicConfig(level=logging.DEBUG)
|
142 |
+
hps = utils.get_hparams_from_file(args.config)
|
143 |
+
|
144 |
+
device = (
|
145 |
+
"cuda:0"
|
146 |
+
if torch.cuda.is_available()
|
147 |
+
else (
|
148 |
+
"mps"
|
149 |
+
if sys.platform == "darwin" and torch.backends.mps.is_available()
|
150 |
+
else "cpu"
|
151 |
+
)
|
152 |
+
)
|
153 |
+
net_g = SynthesizerTrn(
|
154 |
+
len(symbols),
|
155 |
+
hps.data.filter_length // 2 + 1,
|
156 |
+
hps.train.segment_size // hps.data.hop_length,
|
157 |
+
n_speakers=hps.data.n_speakers,
|
158 |
+
**hps.model,
|
159 |
+
).to(device)
|
160 |
+
_ = net_g.eval()
|
161 |
+
|
162 |
+
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
|
163 |
+
|
164 |
+
speaker_ids = hps.data.spk2id
|
165 |
+
speakers = list(speaker_ids.keys())
|
166 |
+
languages = ["ZH", "JP"]
|
167 |
+
with gr.Blocks() as app:
|
168 |
+
with gr.Row():
|
169 |
+
with gr.Column():
|
170 |
+
gr.Markdown(value="""
|
171 |
+
🤖 【AI Hanser】在线语音合成 Bert-Vits2 🤖\n
|
172 |
+
📝 作者:Rayzggz 📰博客 https://roi.moe 📺B站 https://space.bilibili.com/10501326 📝\n
|
173 |
+
🎤 声音来源:Hanser https://space.bilibili.com/11073 🎤\n
|
174 |
+
🔗 Bert-VITS2:https://github.com/fishaudio/Bert-VITS2 🔗\n
|
175 |
+
✅ 使用本模型请遵守中华人民共和国和美利坚合众国法律 ✅\n
|
176 |
+
🏷️ 使用基于本模型的所有生成内容均需标注「使用Bert-VITS2 AI生成」、「本项目地址」、「作者名称」和「声音来源」 🏷️\n
|
177 |
+
""")
|
178 |
+
text = gr.TextArea(
|
179 |
+
label="Text",
|
180 |
+
placeholder="Input Text Here",
|
181 |
+
value="澡后挖耳朵,湿湿一大坨",
|
182 |
+
)
|
183 |
+
speaker = gr.Dropdown(
|
184 |
+
choices=speakers, value=speakers[0], label="Speaker"
|
185 |
+
)
|
186 |
+
sdp_ratio = gr.Slider(
|
187 |
+
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
|
188 |
+
)
|
189 |
+
noise_scale = gr.Slider(
|
190 |
+
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
|
191 |
+
)
|
192 |
+
noise_scale_w = gr.Slider(
|
193 |
+
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
|
194 |
+
)
|
195 |
+
length_scale = gr.Slider(
|
196 |
+
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
|
197 |
+
)
|
198 |
+
language = gr.Dropdown(
|
199 |
+
choices=languages, value=languages[0], label="Language"
|
200 |
+
)
|
201 |
+
btn = gr.Button("Generate 生成!", variant="primary")
|
202 |
+
with gr.Column():
|
203 |
+
text_output = gr.Textbox(label="Message")
|
204 |
+
audio_output = gr.Audio(label="Output Audio")
|
205 |
+
gr.Markdown(value="""
|
206 |
+
👏 鸣谢: 👏\n
|
207 |
+
👤 团子是咸鱼 https://space.bilibili.com/10685437 👤\n
|
208 |
+
👤 领航员未鸟 https://space.bilibili.com/2403955 👤\n
|
209 |
+
👤 Xz乔希 https://space.bilibili.com/5859321 👤\n
|
210 |
+
🧠 Google Colab https://colab.research.google.com/ 🧠\n
|
211 |
+
📧 如果你是“Hanser”,并且希望对此模型主张权利,请通过上方“作者”部分的联系方式联系,我将积极配合处理。📧 \n
|
212 |
+
""")
|
213 |
+
|
214 |
+
btn.click(
|
215 |
+
tts_fn,
|
216 |
+
inputs=[
|
217 |
+
text,
|
218 |
+
speaker,
|
219 |
+
sdp_ratio,
|
220 |
+
noise_scale,
|
221 |
+
noise_scale_w,
|
222 |
+
length_scale,
|
223 |
+
language,
|
224 |
+
],
|
225 |
+
outputs=[text_output, audio_output],
|
226 |
+
)
|
227 |
+
|
228 |
+
app.launch(show_error=True)
|
attentions.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import logging
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class LayerNorm(nn.Module):
|
13 |
+
def __init__(self, channels, eps=1e-5):
|
14 |
+
super().__init__()
|
15 |
+
self.channels = channels
|
16 |
+
self.eps = eps
|
17 |
+
|
18 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
19 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = x.transpose(1, -1)
|
23 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
24 |
+
return x.transpose(1, -1)
|
25 |
+
|
26 |
+
|
27 |
+
@torch.jit.script
|
28 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
29 |
+
n_channels_int = n_channels[0]
|
30 |
+
in_act = input_a + input_b
|
31 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
32 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
33 |
+
acts = t_act * s_act
|
34 |
+
return acts
|
35 |
+
|
36 |
+
|
37 |
+
class Encoder(nn.Module):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
hidden_channels,
|
41 |
+
filter_channels,
|
42 |
+
n_heads,
|
43 |
+
n_layers,
|
44 |
+
kernel_size=1,
|
45 |
+
p_dropout=0.0,
|
46 |
+
window_size=4,
|
47 |
+
isflow=True,
|
48 |
+
**kwargs
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.hidden_channels = hidden_channels
|
52 |
+
self.filter_channels = filter_channels
|
53 |
+
self.n_heads = n_heads
|
54 |
+
self.n_layers = n_layers
|
55 |
+
self.kernel_size = kernel_size
|
56 |
+
self.p_dropout = p_dropout
|
57 |
+
self.window_size = window_size
|
58 |
+
# if isflow:
|
59 |
+
# cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
|
60 |
+
# self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
61 |
+
# self.cond_layer = weight_norm(cond_layer, name='weight')
|
62 |
+
# self.gin_channels = 256
|
63 |
+
self.cond_layer_idx = self.n_layers
|
64 |
+
if "gin_channels" in kwargs:
|
65 |
+
self.gin_channels = kwargs["gin_channels"]
|
66 |
+
if self.gin_channels != 0:
|
67 |
+
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
68 |
+
# vits2 says 3rd block, so idx is 2 by default
|
69 |
+
self.cond_layer_idx = (
|
70 |
+
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
|
71 |
+
)
|
72 |
+
logging.debug(self.gin_channels, self.cond_layer_idx)
|
73 |
+
assert (
|
74 |
+
self.cond_layer_idx < self.n_layers
|
75 |
+
), "cond_layer_idx should be less than n_layers"
|
76 |
+
self.drop = nn.Dropout(p_dropout)
|
77 |
+
self.attn_layers = nn.ModuleList()
|
78 |
+
self.norm_layers_1 = nn.ModuleList()
|
79 |
+
self.ffn_layers = nn.ModuleList()
|
80 |
+
self.norm_layers_2 = nn.ModuleList()
|
81 |
+
for i in range(self.n_layers):
|
82 |
+
self.attn_layers.append(
|
83 |
+
MultiHeadAttention(
|
84 |
+
hidden_channels,
|
85 |
+
hidden_channels,
|
86 |
+
n_heads,
|
87 |
+
p_dropout=p_dropout,
|
88 |
+
window_size=window_size,
|
89 |
+
)
|
90 |
+
)
|
91 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
92 |
+
self.ffn_layers.append(
|
93 |
+
FFN(
|
94 |
+
hidden_channels,
|
95 |
+
hidden_channels,
|
96 |
+
filter_channels,
|
97 |
+
kernel_size,
|
98 |
+
p_dropout=p_dropout,
|
99 |
+
)
|
100 |
+
)
|
101 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
102 |
+
|
103 |
+
def forward(self, x, x_mask, g=None):
|
104 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
105 |
+
x = x * x_mask
|
106 |
+
for i in range(self.n_layers):
|
107 |
+
if i == self.cond_layer_idx and g is not None:
|
108 |
+
g = self.spk_emb_linear(g.transpose(1, 2))
|
109 |
+
g = g.transpose(1, 2)
|
110 |
+
x = x + g
|
111 |
+
x = x * x_mask
|
112 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
113 |
+
y = self.drop(y)
|
114 |
+
x = self.norm_layers_1[i](x + y)
|
115 |
+
|
116 |
+
y = self.ffn_layers[i](x, x_mask)
|
117 |
+
y = self.drop(y)
|
118 |
+
x = self.norm_layers_2[i](x + y)
|
119 |
+
x = x * x_mask
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class Decoder(nn.Module):
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
hidden_channels,
|
127 |
+
filter_channels,
|
128 |
+
n_heads,
|
129 |
+
n_layers,
|
130 |
+
kernel_size=1,
|
131 |
+
p_dropout=0.0,
|
132 |
+
proximal_bias=False,
|
133 |
+
proximal_init=True,
|
134 |
+
**kwargs
|
135 |
+
):
|
136 |
+
super().__init__()
|
137 |
+
self.hidden_channels = hidden_channels
|
138 |
+
self.filter_channels = filter_channels
|
139 |
+
self.n_heads = n_heads
|
140 |
+
self.n_layers = n_layers
|
141 |
+
self.kernel_size = kernel_size
|
142 |
+
self.p_dropout = p_dropout
|
143 |
+
self.proximal_bias = proximal_bias
|
144 |
+
self.proximal_init = proximal_init
|
145 |
+
|
146 |
+
self.drop = nn.Dropout(p_dropout)
|
147 |
+
self.self_attn_layers = nn.ModuleList()
|
148 |
+
self.norm_layers_0 = nn.ModuleList()
|
149 |
+
self.encdec_attn_layers = nn.ModuleList()
|
150 |
+
self.norm_layers_1 = nn.ModuleList()
|
151 |
+
self.ffn_layers = nn.ModuleList()
|
152 |
+
self.norm_layers_2 = nn.ModuleList()
|
153 |
+
for i in range(self.n_layers):
|
154 |
+
self.self_attn_layers.append(
|
155 |
+
MultiHeadAttention(
|
156 |
+
hidden_channels,
|
157 |
+
hidden_channels,
|
158 |
+
n_heads,
|
159 |
+
p_dropout=p_dropout,
|
160 |
+
proximal_bias=proximal_bias,
|
161 |
+
proximal_init=proximal_init,
|
162 |
+
)
|
163 |
+
)
|
164 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
165 |
+
self.encdec_attn_layers.append(
|
166 |
+
MultiHeadAttention(
|
167 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
168 |
+
)
|
169 |
+
)
|
170 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
171 |
+
self.ffn_layers.append(
|
172 |
+
FFN(
|
173 |
+
hidden_channels,
|
174 |
+
hidden_channels,
|
175 |
+
filter_channels,
|
176 |
+
kernel_size,
|
177 |
+
p_dropout=p_dropout,
|
178 |
+
causal=True,
|
179 |
+
)
|
180 |
+
)
|
181 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
182 |
+
|
183 |
+
def forward(self, x, x_mask, h, h_mask):
|
184 |
+
"""
|
185 |
+
x: decoder input
|
186 |
+
h: encoder output
|
187 |
+
"""
|
188 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
189 |
+
device=x.device, dtype=x.dtype
|
190 |
+
)
|
191 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
192 |
+
x = x * x_mask
|
193 |
+
for i in range(self.n_layers):
|
194 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
195 |
+
y = self.drop(y)
|
196 |
+
x = self.norm_layers_0[i](x + y)
|
197 |
+
|
198 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
199 |
+
y = self.drop(y)
|
200 |
+
x = self.norm_layers_1[i](x + y)
|
201 |
+
|
202 |
+
y = self.ffn_layers[i](x, x_mask)
|
203 |
+
y = self.drop(y)
|
204 |
+
x = self.norm_layers_2[i](x + y)
|
205 |
+
x = x * x_mask
|
206 |
+
return x
|
207 |
+
|
208 |
+
|
209 |
+
class MultiHeadAttention(nn.Module):
|
210 |
+
def __init__(
|
211 |
+
self,
|
212 |
+
channels,
|
213 |
+
out_channels,
|
214 |
+
n_heads,
|
215 |
+
p_dropout=0.0,
|
216 |
+
window_size=None,
|
217 |
+
heads_share=True,
|
218 |
+
block_length=None,
|
219 |
+
proximal_bias=False,
|
220 |
+
proximal_init=False,
|
221 |
+
):
|
222 |
+
super().__init__()
|
223 |
+
assert channels % n_heads == 0
|
224 |
+
|
225 |
+
self.channels = channels
|
226 |
+
self.out_channels = out_channels
|
227 |
+
self.n_heads = n_heads
|
228 |
+
self.p_dropout = p_dropout
|
229 |
+
self.window_size = window_size
|
230 |
+
self.heads_share = heads_share
|
231 |
+
self.block_length = block_length
|
232 |
+
self.proximal_bias = proximal_bias
|
233 |
+
self.proximal_init = proximal_init
|
234 |
+
self.attn = None
|
235 |
+
|
236 |
+
self.k_channels = channels // n_heads
|
237 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
238 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
239 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
240 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
241 |
+
self.drop = nn.Dropout(p_dropout)
|
242 |
+
|
243 |
+
if window_size is not None:
|
244 |
+
n_heads_rel = 1 if heads_share else n_heads
|
245 |
+
rel_stddev = self.k_channels**-0.5
|
246 |
+
self.emb_rel_k = nn.Parameter(
|
247 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
248 |
+
* rel_stddev
|
249 |
+
)
|
250 |
+
self.emb_rel_v = nn.Parameter(
|
251 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
252 |
+
* rel_stddev
|
253 |
+
)
|
254 |
+
|
255 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
256 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
257 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
258 |
+
if proximal_init:
|
259 |
+
with torch.no_grad():
|
260 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
261 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
262 |
+
|
263 |
+
def forward(self, x, c, attn_mask=None):
|
264 |
+
q = self.conv_q(x)
|
265 |
+
k = self.conv_k(c)
|
266 |
+
v = self.conv_v(c)
|
267 |
+
|
268 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
269 |
+
|
270 |
+
x = self.conv_o(x)
|
271 |
+
return x
|
272 |
+
|
273 |
+
def attention(self, query, key, value, mask=None):
|
274 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
275 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
276 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
277 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
278 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
279 |
+
|
280 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
281 |
+
if self.window_size is not None:
|
282 |
+
assert (
|
283 |
+
t_s == t_t
|
284 |
+
), "Relative attention is only available for self-attention."
|
285 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
286 |
+
rel_logits = self._matmul_with_relative_keys(
|
287 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
288 |
+
)
|
289 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
290 |
+
scores = scores + scores_local
|
291 |
+
if self.proximal_bias:
|
292 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
293 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
294 |
+
device=scores.device, dtype=scores.dtype
|
295 |
+
)
|
296 |
+
if mask is not None:
|
297 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
298 |
+
if self.block_length is not None:
|
299 |
+
assert (
|
300 |
+
t_s == t_t
|
301 |
+
), "Local attention is only available for self-attention."
|
302 |
+
block_mask = (
|
303 |
+
torch.ones_like(scores)
|
304 |
+
.triu(-self.block_length)
|
305 |
+
.tril(self.block_length)
|
306 |
+
)
|
307 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
308 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
309 |
+
p_attn = self.drop(p_attn)
|
310 |
+
output = torch.matmul(p_attn, value)
|
311 |
+
if self.window_size is not None:
|
312 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
313 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
314 |
+
self.emb_rel_v, t_s
|
315 |
+
)
|
316 |
+
output = output + self._matmul_with_relative_values(
|
317 |
+
relative_weights, value_relative_embeddings
|
318 |
+
)
|
319 |
+
output = (
|
320 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
321 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
322 |
+
return output, p_attn
|
323 |
+
|
324 |
+
def _matmul_with_relative_values(self, x, y):
|
325 |
+
"""
|
326 |
+
x: [b, h, l, m]
|
327 |
+
y: [h or 1, m, d]
|
328 |
+
ret: [b, h, l, d]
|
329 |
+
"""
|
330 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
331 |
+
return ret
|
332 |
+
|
333 |
+
def _matmul_with_relative_keys(self, x, y):
|
334 |
+
"""
|
335 |
+
x: [b, h, l, d]
|
336 |
+
y: [h or 1, m, d]
|
337 |
+
ret: [b, h, l, m]
|
338 |
+
"""
|
339 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
340 |
+
return ret
|
341 |
+
|
342 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
343 |
+
2 * self.window_size + 1
|
344 |
+
# Pad first before slice to avoid using cond ops.
|
345 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
346 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
347 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
348 |
+
if pad_length > 0:
|
349 |
+
padded_relative_embeddings = F.pad(
|
350 |
+
relative_embeddings,
|
351 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
padded_relative_embeddings = relative_embeddings
|
355 |
+
used_relative_embeddings = padded_relative_embeddings[
|
356 |
+
:, slice_start_position:slice_end_position
|
357 |
+
]
|
358 |
+
return used_relative_embeddings
|
359 |
+
|
360 |
+
def _relative_position_to_absolute_position(self, x):
|
361 |
+
"""
|
362 |
+
x: [b, h, l, 2*l-1]
|
363 |
+
ret: [b, h, l, l]
|
364 |
+
"""
|
365 |
+
batch, heads, length, _ = x.size()
|
366 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
367 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
368 |
+
|
369 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
370 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
371 |
+
x_flat = F.pad(
|
372 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
373 |
+
)
|
374 |
+
|
375 |
+
# Reshape and slice out the padded elements.
|
376 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
377 |
+
:, :, :length, length - 1 :
|
378 |
+
]
|
379 |
+
return x_final
|
380 |
+
|
381 |
+
def _absolute_position_to_relative_position(self, x):
|
382 |
+
"""
|
383 |
+
x: [b, h, l, l]
|
384 |
+
ret: [b, h, l, 2*l-1]
|
385 |
+
"""
|
386 |
+
batch, heads, length, _ = x.size()
|
387 |
+
# pad along column
|
388 |
+
x = F.pad(
|
389 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
390 |
+
)
|
391 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
392 |
+
# add 0's in the beginning that will skew the elements after reshape
|
393 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
394 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
395 |
+
return x_final
|
396 |
+
|
397 |
+
def _attention_bias_proximal(self, length):
|
398 |
+
"""Bias for self-attention to encourage attention to close positions.
|
399 |
+
Args:
|
400 |
+
length: an integer scalar.
|
401 |
+
Returns:
|
402 |
+
a Tensor with shape [1, 1, length, length]
|
403 |
+
"""
|
404 |
+
r = torch.arange(length, dtype=torch.float32)
|
405 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
406 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
407 |
+
|
408 |
+
|
409 |
+
class FFN(nn.Module):
|
410 |
+
def __init__(
|
411 |
+
self,
|
412 |
+
in_channels,
|
413 |
+
out_channels,
|
414 |
+
filter_channels,
|
415 |
+
kernel_size,
|
416 |
+
p_dropout=0.0,
|
417 |
+
activation=None,
|
418 |
+
causal=False,
|
419 |
+
):
|
420 |
+
super().__init__()
|
421 |
+
self.in_channels = in_channels
|
422 |
+
self.out_channels = out_channels
|
423 |
+
self.filter_channels = filter_channels
|
424 |
+
self.kernel_size = kernel_size
|
425 |
+
self.p_dropout = p_dropout
|
426 |
+
self.activation = activation
|
427 |
+
self.causal = causal
|
428 |
+
|
429 |
+
if causal:
|
430 |
+
self.padding = self._causal_padding
|
431 |
+
else:
|
432 |
+
self.padding = self._same_padding
|
433 |
+
|
434 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
435 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
436 |
+
self.drop = nn.Dropout(p_dropout)
|
437 |
+
|
438 |
+
def forward(self, x, x_mask):
|
439 |
+
x = self.conv_1(self.padding(x * x_mask))
|
440 |
+
if self.activation == "gelu":
|
441 |
+
x = x * torch.sigmoid(1.702 * x)
|
442 |
+
else:
|
443 |
+
x = torch.relu(x)
|
444 |
+
x = self.drop(x)
|
445 |
+
x = self.conv_2(self.padding(x * x_mask))
|
446 |
+
return x * x_mask
|
447 |
+
|
448 |
+
def _causal_padding(self, x):
|
449 |
+
if self.kernel_size == 1:
|
450 |
+
return x
|
451 |
+
pad_l = self.kernel_size - 1
|
452 |
+
pad_r = 0
|
453 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
454 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
455 |
+
return x
|
456 |
+
|
457 |
+
def _same_padding(self, x):
|
458 |
+
if self.kernel_size == 1:
|
459 |
+
return x
|
460 |
+
pad_l = (self.kernel_size - 1) // 2
|
461 |
+
pad_r = self.kernel_size // 2
|
462 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
463 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
464 |
+
return x
|
bert/bert-base-japanese-v3/README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- cc100
|
5 |
+
- wikipedia
|
6 |
+
language:
|
7 |
+
- ja
|
8 |
+
widget:
|
9 |
+
- text: 東北大学で[MASK]の研究をしています。
|
10 |
+
---
|
11 |
+
|
12 |
+
# BERT base Japanese (unidic-lite with whole word masking, CC-100 and jawiki-20230102)
|
13 |
+
|
14 |
+
This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language.
|
15 |
+
|
16 |
+
This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by the WordPiece subword tokenization.
|
17 |
+
Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective.
|
18 |
+
|
19 |
+
The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/).
|
20 |
+
|
21 |
+
## Model architecture
|
22 |
+
|
23 |
+
The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.
|
24 |
+
|
25 |
+
## Training Data
|
26 |
+
|
27 |
+
The model is trained on the Japanese portion of [CC-100 dataset](https://data.statmt.org/cc-100/) and the Japanese version of Wikipedia.
|
28 |
+
For Wikipedia, we generated a text corpus from the [Wikipedia Cirrussearch dump file](https://dumps.wikimedia.org/other/cirrussearch/) as of January 2, 2023.
|
29 |
+
The corpus files generated from CC-100 and Wikipedia are 74.3GB and 4.9GB in size and consist of approximately 392M and 34M sentences, respectively.
|
30 |
+
|
31 |
+
For the purpose of splitting texts into sentences, we used [fugashi](https://github.com/polm/fugashi) with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary (v0.0.7).
|
32 |
+
|
33 |
+
## Tokenization
|
34 |
+
|
35 |
+
The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm.
|
36 |
+
The vocabulary size is 32768.
|
37 |
+
|
38 |
+
We used [fugashi](https://github.com/polm/fugashi) and [unidic-lite](https://github.com/polm/unidic-lite) packages for the tokenization.
|
39 |
+
|
40 |
+
## Training
|
41 |
+
|
42 |
+
We trained the model first on the CC-100 corpus for 1M steps and then on the Wikipedia corpus for another 1M steps.
|
43 |
+
For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.
|
44 |
+
|
45 |
+
For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/).
|
46 |
+
|
47 |
+
## Licenses
|
48 |
+
|
49 |
+
The pretrained models are distributed under the Apache License 2.0.
|
50 |
+
|
51 |
+
## Acknowledgments
|
52 |
+
|
53 |
+
This model is trained with Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/) program.
|
bert/bert-base-japanese-v3/config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForPreTraining"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 3072,
|
11 |
+
"layer_norm_eps": 1e-12,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "bert",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 12,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"vocab_size": 32768
|
19 |
+
}
|
bert/bert-base-japanese-v3/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dce0b8b350432362a184b9f8bb90ffb0f2ff0c394ab43b915e318926f4e7569
|
3 |
+
size 447341816
|
bert/bert-base-japanese-v3/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e172862e0674054d65e0ba40d67df2a4687982f589db44aa27091c386e5450a4
|
3 |
+
size 447406217
|
bert/bert-base-japanese-v3/tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71920d0dc0174d0a0ce32b934fe65f15320b2d53aa7e671718b33065748cb712
|
3 |
+
size 549871840
|
bert/bert-base-japanese-v3/tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
3 |
+
"model_max_length": 512,
|
4 |
+
"do_lower_case": false,
|
5 |
+
"word_tokenizer_type": "mecab",
|
6 |
+
"subword_tokenizer_type": "wordpiece",
|
7 |
+
"mecab_kwargs": {
|
8 |
+
"mecab_dic": "unidic_lite"
|
9 |
+
}
|
10 |
+
}
|
bert/bert-base-japanese-v3/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bert/chinese-roberta-wwm-ext-large/.gitattributes
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
bert/chinese-roberta-wwm-ext-large/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.bin
|
bert/chinese-roberta-wwm-ext-large/README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
tags:
|
5 |
+
- bert
|
6 |
+
license: "apache-2.0"
|
7 |
+
---
|
8 |
+
|
9 |
+
# Please use 'Bert' related functions to load this model!
|
10 |
+
|
11 |
+
## Chinese BERT with Whole Word Masking
|
12 |
+
For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.
|
13 |
+
|
14 |
+
**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
|
15 |
+
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
|
16 |
+
|
17 |
+
This repository is developed based on:https://github.com/google-research/bert
|
18 |
+
|
19 |
+
You may also interested in,
|
20 |
+
- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
|
21 |
+
- Chinese MacBERT: https://github.com/ymcui/MacBERT
|
22 |
+
- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
|
23 |
+
- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
|
24 |
+
- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
|
25 |
+
|
26 |
+
More resources by HFL: https://github.com/ymcui/HFL-Anthology
|
27 |
+
|
28 |
+
## Citation
|
29 |
+
If you find the technical report or resource is useful, please cite the following technical report in your paper.
|
30 |
+
- Primary: https://arxiv.org/abs/2004.13922
|
31 |
+
```
|
32 |
+
@inproceedings{cui-etal-2020-revisiting,
|
33 |
+
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
|
34 |
+
author = "Cui, Yiming and
|
35 |
+
Che, Wanxiang and
|
36 |
+
Liu, Ting and
|
37 |
+
Qin, Bing and
|
38 |
+
Wang, Shijin and
|
39 |
+
Hu, Guoping",
|
40 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
|
41 |
+
month = nov,
|
42 |
+
year = "2020",
|
43 |
+
address = "Online",
|
44 |
+
publisher = "Association for Computational Linguistics",
|
45 |
+
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
|
46 |
+
pages = "657--668",
|
47 |
+
}
|
48 |
+
```
|
49 |
+
- Secondary: https://arxiv.org/abs/1906.08101
|
50 |
+
```
|
51 |
+
@article{chinese-bert-wwm,
|
52 |
+
title={Pre-Training with Whole Word Masking for Chinese BERT},
|
53 |
+
author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
|
54 |
+
journal={arXiv preprint arXiv:1906.08101},
|
55 |
+
year={2019}
|
56 |
+
}
|
57 |
+
```
|
bert/chinese-roberta-wwm-ext-large/added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
bert/chinese-roberta-wwm-ext-large/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"type_vocab_size": 2,
|
27 |
+
"vocab_size": 21128
|
28 |
+
}
|
bert/chinese-roberta-wwm-ext-large/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a46a510fe646213c728b80c9d0d5691d05235523d67f9ac3c3ce4e67deabf926
|
3 |
+
size 1302196529
|
bert/chinese-roberta-wwm-ext-large/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ac62d49144d770c5ca9a5d1d3039c4995665a080febe63198189857c6bd11cd
|
3 |
+
size 1306484351
|
bert/chinese-roberta-wwm-ext-large/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
bert/chinese-roberta-wwm-ext-large/tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72d18616fb285b720cb869c25aa9f4d7371033dfd5d8ba82aca448fdd28132bf
|
3 |
+
size 1302594480
|
bert/chinese-roberta-wwm-ext-large/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bert/chinese-roberta-wwm-ext-large/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"init_inputs": []}
|
bert/chinese-roberta-wwm-ext-large/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bert_gen.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from multiprocessing import Pool
|
3 |
+
import commons
|
4 |
+
import utils
|
5 |
+
from tqdm import tqdm
|
6 |
+
from text import cleaned_text_to_sequence, get_bert
|
7 |
+
import argparse
|
8 |
+
import torch.multiprocessing as mp
|
9 |
+
|
10 |
+
|
11 |
+
def process_line(line):
|
12 |
+
rank = mp.current_process()._identity
|
13 |
+
rank = rank[0] if len(rank) > 0 else 0
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
gpu_id = rank % torch.cuda.device_count()
|
16 |
+
device = torch.device(f"cuda:{gpu_id}")
|
17 |
+
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")
|
18 |
+
phone = phones.split(" ")
|
19 |
+
tone = [int(i) for i in tone.split(" ")]
|
20 |
+
word2ph = [int(i) for i in word2ph.split(" ")]
|
21 |
+
word2ph = [i for i in word2ph]
|
22 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
23 |
+
|
24 |
+
phone = commons.intersperse(phone, 0)
|
25 |
+
tone = commons.intersperse(tone, 0)
|
26 |
+
language = commons.intersperse(language, 0)
|
27 |
+
for i in range(len(word2ph)):
|
28 |
+
word2ph[i] = word2ph[i] * 2
|
29 |
+
word2ph[0] += 1
|
30 |
+
|
31 |
+
bert_path = wav_path.replace(".wav", ".bert.pt")
|
32 |
+
|
33 |
+
try:
|
34 |
+
bert = torch.load(bert_path)
|
35 |
+
assert bert.shape[-1] == len(phone)
|
36 |
+
except Exception:
|
37 |
+
bert = get_bert(text, word2ph, language_str, device)
|
38 |
+
assert bert.shape[-1] == len(phone)
|
39 |
+
torch.save(bert, bert_path)
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
parser = argparse.ArgumentParser()
|
44 |
+
parser.add_argument("-c", "--config", type=str, default="configs/config.json")
|
45 |
+
parser.add_argument("--num_processes", type=int, default=2)
|
46 |
+
args = parser.parse_args()
|
47 |
+
config_path = args.config
|
48 |
+
hps = utils.get_hparams_from_file(config_path)
|
49 |
+
lines = []
|
50 |
+
with open(hps.data.training_files, encoding="utf-8") as f:
|
51 |
+
lines.extend(f.readlines())
|
52 |
+
|
53 |
+
with open(hps.data.validation_files, encoding="utf-8") as f:
|
54 |
+
lines.extend(f.readlines())
|
55 |
+
|
56 |
+
num_processes = args.num_processes
|
57 |
+
with Pool(processes=num_processes) as pool:
|
58 |
+
for _ in tqdm(pool.imap_unordered(process_line, lines), total=len(lines)):
|
59 |
+
pass
|
commons.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def init_weights(m, mean=0.0, std=0.01):
|
7 |
+
classname = m.__class__.__name__
|
8 |
+
if classname.find("Conv") != -1:
|
9 |
+
m.weight.data.normal_(mean, std)
|
10 |
+
|
11 |
+
|
12 |
+
def get_padding(kernel_size, dilation=1):
|
13 |
+
return int((kernel_size * dilation - dilation) / 2)
|
14 |
+
|
15 |
+
|
16 |
+
def convert_pad_shape(pad_shape):
|
17 |
+
layer = pad_shape[::-1]
|
18 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
19 |
+
return pad_shape
|
20 |
+
|
21 |
+
|
22 |
+
def intersperse(lst, item):
|
23 |
+
result = [item] * (len(lst) * 2 + 1)
|
24 |
+
result[1::2] = lst
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
29 |
+
"""KL(P||Q)"""
|
30 |
+
kl = (logs_q - logs_p) - 0.5
|
31 |
+
kl += (
|
32 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
33 |
+
)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
54 |
+
return ret
|
55 |
+
|
56 |
+
|
57 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
58 |
+
b, d, t = x.size()
|
59 |
+
if x_lengths is None:
|
60 |
+
x_lengths = t
|
61 |
+
ids_str_max = x_lengths - segment_size + 1
|
62 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
68 |
+
position = torch.arange(length, dtype=torch.float)
|
69 |
+
num_timescales = channels // 2
|
70 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
71 |
+
num_timescales - 1
|
72 |
+
)
|
73 |
+
inv_timescales = min_timescale * torch.exp(
|
74 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
75 |
+
)
|
76 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
77 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
78 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
79 |
+
signal = signal.view(1, channels, length)
|
80 |
+
return signal
|
81 |
+
|
82 |
+
|
83 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
84 |
+
b, channels, length = x.size()
|
85 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
86 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
87 |
+
|
88 |
+
|
89 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
90 |
+
b, channels, length = x.size()
|
91 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
92 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
93 |
+
|
94 |
+
|
95 |
+
def subsequent_mask(length):
|
96 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
97 |
+
return mask
|
98 |
+
|
99 |
+
|
100 |
+
@torch.jit.script
|
101 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
102 |
+
n_channels_int = n_channels[0]
|
103 |
+
in_act = input_a + input_b
|
104 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
105 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
106 |
+
acts = t_act * s_act
|
107 |
+
return acts
|
108 |
+
|
109 |
+
|
110 |
+
def convert_pad_shape(pad_shape):
|
111 |
+
layer = pad_shape[::-1]
|
112 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
113 |
+
return pad_shape
|
114 |
+
|
115 |
+
|
116 |
+
def shift_1d(x):
|
117 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
def sequence_mask(length, max_length=None):
|
122 |
+
if max_length is None:
|
123 |
+
max_length = length.max()
|
124 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
125 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
126 |
+
|
127 |
+
|
128 |
+
def generate_path(duration, mask):
|
129 |
+
"""
|
130 |
+
duration: [b, 1, t_x]
|
131 |
+
mask: [b, 1, t_y, t_x]
|
132 |
+
"""
|
133 |
+
|
134 |
+
b, _, t_y, t_x = mask.shape
|
135 |
+
cum_duration = torch.cumsum(duration, -1)
|
136 |
+
|
137 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
138 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
139 |
+
path = path.view(b, t_x, t_y)
|
140 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
141 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
142 |
+
return path
|
143 |
+
|
144 |
+
|
145 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
146 |
+
if isinstance(parameters, torch.Tensor):
|
147 |
+
parameters = [parameters]
|
148 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
149 |
+
norm_type = float(norm_type)
|
150 |
+
if clip_value is not None:
|
151 |
+
clip_value = float(clip_value)
|
152 |
+
|
153 |
+
total_norm = 0
|
154 |
+
for p in parameters:
|
155 |
+
param_norm = p.grad.data.norm(norm_type)
|
156 |
+
total_norm += param_norm.item() ** norm_type
|
157 |
+
if clip_value is not None:
|
158 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
159 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
160 |
+
return total_norm
|
configs/config.json
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 52,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 0.0003,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 8,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"skip_optimizer": true
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"training_files": "filelists/train.list",
|
25 |
+
"validation_files": "filelists/val.list",
|
26 |
+
"max_wav_value": 32768.0,
|
27 |
+
"sampling_rate": 44100,
|
28 |
+
"filter_length": 2048,
|
29 |
+
"hop_length": 512,
|
30 |
+
"win_length": 2048,
|
31 |
+
"n_mel_channels": 128,
|
32 |
+
"mel_fmin": 0.0,
|
33 |
+
"mel_fmax": null,
|
34 |
+
"add_blank": true,
|
35 |
+
"n_speakers": 256,
|
36 |
+
"cleaned_text": true,
|
37 |
+
"spk2id": {
|
38 |
+
"hanser": 0
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"model": {
|
42 |
+
"use_spk_conditioned_encoder": true,
|
43 |
+
"use_noise_scaled_mas": true,
|
44 |
+
"use_mel_posterior_encoder": false,
|
45 |
+
"use_duration_discriminator": true,
|
46 |
+
"inter_channels": 192,
|
47 |
+
"hidden_channels": 192,
|
48 |
+
"filter_channels": 768,
|
49 |
+
"n_heads": 2,
|
50 |
+
"n_layers": 6,
|
51 |
+
"kernel_size": 3,
|
52 |
+
"p_dropout": 0.1,
|
53 |
+
"resblock": "1",
|
54 |
+
"resblock_kernel_sizes": [
|
55 |
+
3,
|
56 |
+
7,
|
57 |
+
11
|
58 |
+
],
|
59 |
+
"resblock_dilation_sizes": [
|
60 |
+
[
|
61 |
+
1,
|
62 |
+
3,
|
63 |
+
5
|
64 |
+
],
|
65 |
+
[
|
66 |
+
1,
|
67 |
+
3,
|
68 |
+
5
|
69 |
+
],
|
70 |
+
[
|
71 |
+
1,
|
72 |
+
3,
|
73 |
+
5
|
74 |
+
]
|
75 |
+
],
|
76 |
+
"upsample_rates": [
|
77 |
+
8,
|
78 |
+
8,
|
79 |
+
2,
|
80 |
+
2,
|
81 |
+
2
|
82 |
+
],
|
83 |
+
"upsample_initial_channel": 512,
|
84 |
+
"upsample_kernel_sizes": [
|
85 |
+
16,
|
86 |
+
16,
|
87 |
+
8,
|
88 |
+
2,
|
89 |
+
2
|
90 |
+
],
|
91 |
+
"n_layers_q": 3,
|
92 |
+
"use_spectral_norm": false,
|
93 |
+
"gin_channels": 256
|
94 |
+
}
|
95 |
+
}
|
data_utils.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import torch.utils.data
|
5 |
+
from tqdm import tqdm
|
6 |
+
from loguru import logger
|
7 |
+
import commons
|
8 |
+
from mel_processing import spectrogram_torch, mel_spectrogram_torch
|
9 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
10 |
+
from text import cleaned_text_to_sequence, get_bert
|
11 |
+
|
12 |
+
"""Multi speaker version"""
|
13 |
+
|
14 |
+
|
15 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
16 |
+
"""
|
17 |
+
1) loads audio, speaker_id, text pairs
|
18 |
+
2) normalizes text and converts them to sequences of integers
|
19 |
+
3) computes spectrograms from audio files.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, audiopaths_sid_text, hparams):
|
23 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
24 |
+
self.max_wav_value = hparams.max_wav_value
|
25 |
+
self.sampling_rate = hparams.sampling_rate
|
26 |
+
self.filter_length = hparams.filter_length
|
27 |
+
self.hop_length = hparams.hop_length
|
28 |
+
self.win_length = hparams.win_length
|
29 |
+
self.sampling_rate = hparams.sampling_rate
|
30 |
+
self.spk_map = hparams.spk2id
|
31 |
+
self.hparams = hparams
|
32 |
+
|
33 |
+
self.use_mel_spec_posterior = getattr(
|
34 |
+
hparams, "use_mel_posterior_encoder", False
|
35 |
+
)
|
36 |
+
if self.use_mel_spec_posterior:
|
37 |
+
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
|
38 |
+
|
39 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
40 |
+
|
41 |
+
self.add_blank = hparams.add_blank
|
42 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
43 |
+
self.max_text_len = getattr(hparams, "max_text_len", 300)
|
44 |
+
|
45 |
+
random.seed(1234)
|
46 |
+
random.shuffle(self.audiopaths_sid_text)
|
47 |
+
self._filter()
|
48 |
+
|
49 |
+
def _filter(self):
|
50 |
+
"""
|
51 |
+
Filter text & store spec lengths
|
52 |
+
"""
|
53 |
+
# Store spectrogram lengths for Bucketing
|
54 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
55 |
+
# spec_length = wav_length // hop_length
|
56 |
+
|
57 |
+
audiopaths_sid_text_new = []
|
58 |
+
lengths = []
|
59 |
+
skipped = 0
|
60 |
+
logger.info("Init dataset...")
|
61 |
+
for _id, spk, language, text, phones, tone, word2ph in tqdm(
|
62 |
+
self.audiopaths_sid_text
|
63 |
+
):
|
64 |
+
audiopath = f"{_id}"
|
65 |
+
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
|
66 |
+
phones = phones.split(" ")
|
67 |
+
tone = [int(i) for i in tone.split(" ")]
|
68 |
+
word2ph = [int(i) for i in word2ph.split(" ")]
|
69 |
+
audiopaths_sid_text_new.append(
|
70 |
+
[audiopath, spk, language, text, phones, tone, word2ph]
|
71 |
+
)
|
72 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
73 |
+
else:
|
74 |
+
skipped += 1
|
75 |
+
logger.info(
|
76 |
+
"skipped: "
|
77 |
+
+ str(skipped)
|
78 |
+
+ ", total: "
|
79 |
+
+ str(len(self.audiopaths_sid_text))
|
80 |
+
)
|
81 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
82 |
+
self.lengths = lengths
|
83 |
+
|
84 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
85 |
+
# separate filename, speaker_id and text
|
86 |
+
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
|
87 |
+
|
88 |
+
bert, ja_bert, phones, tone, language = self.get_text(
|
89 |
+
text, word2ph, phones, tone, language, audiopath
|
90 |
+
)
|
91 |
+
|
92 |
+
spec, wav = self.get_audio(audiopath)
|
93 |
+
sid = torch.LongTensor([int(self.spk_map[sid])])
|
94 |
+
return (phones, spec, wav, sid, tone, language, bert, ja_bert)
|
95 |
+
|
96 |
+
def get_audio(self, filename):
|
97 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
98 |
+
if sampling_rate != self.sampling_rate:
|
99 |
+
raise ValueError(
|
100 |
+
"{} {} SR doesn't match target {} SR".format(
|
101 |
+
filename, sampling_rate, self.sampling_rate
|
102 |
+
)
|
103 |
+
)
|
104 |
+
audio_norm = audio / self.max_wav_value
|
105 |
+
audio_norm = audio_norm.unsqueeze(0)
|
106 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
107 |
+
if self.use_mel_spec_posterior:
|
108 |
+
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
|
109 |
+
try:
|
110 |
+
spec = torch.load(spec_filename)
|
111 |
+
except:
|
112 |
+
if self.use_mel_spec_posterior:
|
113 |
+
spec = mel_spectrogram_torch(
|
114 |
+
audio_norm,
|
115 |
+
self.filter_length,
|
116 |
+
self.n_mel_channels,
|
117 |
+
self.sampling_rate,
|
118 |
+
self.hop_length,
|
119 |
+
self.win_length,
|
120 |
+
self.hparams.mel_fmin,
|
121 |
+
self.hparams.mel_fmax,
|
122 |
+
center=False,
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
spec = spectrogram_torch(
|
126 |
+
audio_norm,
|
127 |
+
self.filter_length,
|
128 |
+
self.sampling_rate,
|
129 |
+
self.hop_length,
|
130 |
+
self.win_length,
|
131 |
+
center=False,
|
132 |
+
)
|
133 |
+
spec = torch.squeeze(spec, 0)
|
134 |
+
torch.save(spec, spec_filename)
|
135 |
+
return spec, audio_norm
|
136 |
+
|
137 |
+
def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
|
138 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
139 |
+
if self.add_blank:
|
140 |
+
phone = commons.intersperse(phone, 0)
|
141 |
+
tone = commons.intersperse(tone, 0)
|
142 |
+
language = commons.intersperse(language, 0)
|
143 |
+
for i in range(len(word2ph)):
|
144 |
+
word2ph[i] = word2ph[i] * 2
|
145 |
+
word2ph[0] += 1
|
146 |
+
bert_path = wav_path.replace(".wav", ".bert.pt")
|
147 |
+
try:
|
148 |
+
bert = torch.load(bert_path)
|
149 |
+
assert bert.shape[-1] == len(phone)
|
150 |
+
except:
|
151 |
+
bert = get_bert(text, word2ph, language_str)
|
152 |
+
torch.save(bert, bert_path)
|
153 |
+
assert bert.shape[-1] == len(phone), phone
|
154 |
+
|
155 |
+
if language_str == "ZH":
|
156 |
+
bert = bert
|
157 |
+
ja_bert = torch.zeros(768, len(phone))
|
158 |
+
elif language_str == "JP":
|
159 |
+
ja_bert = bert
|
160 |
+
bert = torch.zeros(1024, len(phone))
|
161 |
+
else:
|
162 |
+
bert = torch.zeros(1024, len(phone))
|
163 |
+
ja_bert = torch.zeros(768, len(phone))
|
164 |
+
assert bert.shape[-1] == len(phone), (
|
165 |
+
bert.shape,
|
166 |
+
len(phone),
|
167 |
+
sum(word2ph),
|
168 |
+
p1,
|
169 |
+
p2,
|
170 |
+
t1,
|
171 |
+
t2,
|
172 |
+
pold,
|
173 |
+
pold2,
|
174 |
+
word2ph,
|
175 |
+
text,
|
176 |
+
w2pho,
|
177 |
+
)
|
178 |
+
phone = torch.LongTensor(phone)
|
179 |
+
tone = torch.LongTensor(tone)
|
180 |
+
language = torch.LongTensor(language)
|
181 |
+
return bert, ja_bert, phone, tone, language
|
182 |
+
|
183 |
+
def get_sid(self, sid):
|
184 |
+
sid = torch.LongTensor([int(sid)])
|
185 |
+
return sid
|
186 |
+
|
187 |
+
def __getitem__(self, index):
|
188 |
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
189 |
+
|
190 |
+
def __len__(self):
|
191 |
+
return len(self.audiopaths_sid_text)
|
192 |
+
|
193 |
+
|
194 |
+
class TextAudioSpeakerCollate:
|
195 |
+
"""Zero-pads model inputs and targets"""
|
196 |
+
|
197 |
+
def __init__(self, return_ids=False):
|
198 |
+
self.return_ids = return_ids
|
199 |
+
|
200 |
+
def __call__(self, batch):
|
201 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
202 |
+
PARAMS
|
203 |
+
------
|
204 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
205 |
+
"""
|
206 |
+
# Right zero-pad all one-hot text sequences to max input length
|
207 |
+
_, ids_sorted_decreasing = torch.sort(
|
208 |
+
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
209 |
+
)
|
210 |
+
|
211 |
+
max_text_len = max([len(x[0]) for x in batch])
|
212 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
213 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
214 |
+
|
215 |
+
text_lengths = torch.LongTensor(len(batch))
|
216 |
+
spec_lengths = torch.LongTensor(len(batch))
|
217 |
+
wav_lengths = torch.LongTensor(len(batch))
|
218 |
+
sid = torch.LongTensor(len(batch))
|
219 |
+
|
220 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
221 |
+
tone_padded = torch.LongTensor(len(batch), max_text_len)
|
222 |
+
language_padded = torch.LongTensor(len(batch), max_text_len)
|
223 |
+
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
224 |
+
ja_bert_padded = torch.FloatTensor(len(batch), 768, max_text_len)
|
225 |
+
|
226 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
227 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
228 |
+
text_padded.zero_()
|
229 |
+
tone_padded.zero_()
|
230 |
+
language_padded.zero_()
|
231 |
+
spec_padded.zero_()
|
232 |
+
wav_padded.zero_()
|
233 |
+
bert_padded.zero_()
|
234 |
+
ja_bert_padded.zero_()
|
235 |
+
for i in range(len(ids_sorted_decreasing)):
|
236 |
+
row = batch[ids_sorted_decreasing[i]]
|
237 |
+
|
238 |
+
text = row[0]
|
239 |
+
text_padded[i, : text.size(0)] = text
|
240 |
+
text_lengths[i] = text.size(0)
|
241 |
+
|
242 |
+
spec = row[1]
|
243 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
244 |
+
spec_lengths[i] = spec.size(1)
|
245 |
+
|
246 |
+
wav = row[2]
|
247 |
+
wav_padded[i, :, : wav.size(1)] = wav
|
248 |
+
wav_lengths[i] = wav.size(1)
|
249 |
+
|
250 |
+
sid[i] = row[3]
|
251 |
+
|
252 |
+
tone = row[4]
|
253 |
+
tone_padded[i, : tone.size(0)] = tone
|
254 |
+
|
255 |
+
language = row[5]
|
256 |
+
language_padded[i, : language.size(0)] = language
|
257 |
+
|
258 |
+
bert = row[6]
|
259 |
+
bert_padded[i, :, : bert.size(1)] = bert
|
260 |
+
|
261 |
+
ja_bert = row[7]
|
262 |
+
ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert
|
263 |
+
|
264 |
+
return (
|
265 |
+
text_padded,
|
266 |
+
text_lengths,
|
267 |
+
spec_padded,
|
268 |
+
spec_lengths,
|
269 |
+
wav_padded,
|
270 |
+
wav_lengths,
|
271 |
+
sid,
|
272 |
+
tone_padded,
|
273 |
+
language_padded,
|
274 |
+
bert_padded,
|
275 |
+
ja_bert_padded,
|
276 |
+
)
|
277 |
+
|
278 |
+
|
279 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
280 |
+
"""
|
281 |
+
Maintain similar input lengths in a batch.
|
282 |
+
Length groups are specified by boundaries.
|
283 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
284 |
+
|
285 |
+
It removes samples which are not included in the boundaries.
|
286 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
287 |
+
"""
|
288 |
+
|
289 |
+
def __init__(
|
290 |
+
self,
|
291 |
+
dataset,
|
292 |
+
batch_size,
|
293 |
+
boundaries,
|
294 |
+
num_replicas=None,
|
295 |
+
rank=None,
|
296 |
+
shuffle=True,
|
297 |
+
):
|
298 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
299 |
+
self.lengths = dataset.lengths
|
300 |
+
self.batch_size = batch_size
|
301 |
+
self.boundaries = boundaries
|
302 |
+
|
303 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
304 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
305 |
+
self.num_samples = self.total_size // self.num_replicas
|
306 |
+
|
307 |
+
def _create_buckets(self):
|
308 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
309 |
+
for i in range(len(self.lengths)):
|
310 |
+
length = self.lengths[i]
|
311 |
+
idx_bucket = self._bisect(length)
|
312 |
+
if idx_bucket != -1:
|
313 |
+
buckets[idx_bucket].append(i)
|
314 |
+
|
315 |
+
try:
|
316 |
+
for i in range(len(buckets) - 1, 0, -1):
|
317 |
+
if len(buckets[i]) == 0:
|
318 |
+
buckets.pop(i)
|
319 |
+
self.boundaries.pop(i + 1)
|
320 |
+
assert all(len(bucket) > 0 for bucket in buckets)
|
321 |
+
# When one bucket is not traversed
|
322 |
+
except Exception as e:
|
323 |
+
print("Bucket warning ", e)
|
324 |
+
for i in range(len(buckets) - 1, -1, -1):
|
325 |
+
if len(buckets[i]) == 0:
|
326 |
+
buckets.pop(i)
|
327 |
+
self.boundaries.pop(i + 1)
|
328 |
+
|
329 |
+
num_samples_per_bucket = []
|
330 |
+
for i in range(len(buckets)):
|
331 |
+
len_bucket = len(buckets[i])
|
332 |
+
total_batch_size = self.num_replicas * self.batch_size
|
333 |
+
rem = (
|
334 |
+
total_batch_size - (len_bucket % total_batch_size)
|
335 |
+
) % total_batch_size
|
336 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
337 |
+
return buckets, num_samples_per_bucket
|
338 |
+
|
339 |
+
def __iter__(self):
|
340 |
+
# deterministically shuffle based on epoch
|
341 |
+
g = torch.Generator()
|
342 |
+
g.manual_seed(self.epoch)
|
343 |
+
|
344 |
+
indices = []
|
345 |
+
if self.shuffle:
|
346 |
+
for bucket in self.buckets:
|
347 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
348 |
+
else:
|
349 |
+
for bucket in self.buckets:
|
350 |
+
indices.append(list(range(len(bucket))))
|
351 |
+
|
352 |
+
batches = []
|
353 |
+
for i in range(len(self.buckets)):
|
354 |
+
bucket = self.buckets[i]
|
355 |
+
len_bucket = len(bucket)
|
356 |
+
if len_bucket == 0:
|
357 |
+
continue
|
358 |
+
ids_bucket = indices[i]
|
359 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
360 |
+
|
361 |
+
# add extra samples to make it evenly divisible
|
362 |
+
rem = num_samples_bucket - len_bucket
|
363 |
+
ids_bucket = (
|
364 |
+
ids_bucket
|
365 |
+
+ ids_bucket * (rem // len_bucket)
|
366 |
+
+ ids_bucket[: (rem % len_bucket)]
|
367 |
+
)
|
368 |
+
|
369 |
+
# subsample
|
370 |
+
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
371 |
+
|
372 |
+
# batching
|
373 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
374 |
+
batch = [
|
375 |
+
bucket[idx]
|
376 |
+
for idx in ids_bucket[
|
377 |
+
j * self.batch_size : (j + 1) * self.batch_size
|
378 |
+
]
|
379 |
+
]
|
380 |
+
batches.append(batch)
|
381 |
+
|
382 |
+
if self.shuffle:
|
383 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
384 |
+
batches = [batches[i] for i in batch_ids]
|
385 |
+
self.batches = batches
|
386 |
+
|
387 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
388 |
+
return iter(self.batches)
|
389 |
+
|
390 |
+
def _bisect(self, x, lo=0, hi=None):
|
391 |
+
if hi is None:
|
392 |
+
hi = len(self.boundaries) - 1
|
393 |
+
|
394 |
+
if hi > lo:
|
395 |
+
mid = (hi + lo) // 2
|
396 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
397 |
+
return mid
|
398 |
+
elif x <= self.boundaries[mid]:
|
399 |
+
return self._bisect(x, lo, mid)
|
400 |
+
else:
|
401 |
+
return self._bisect(x, mid + 1, hi)
|
402 |
+
else:
|
403 |
+
return -1
|
404 |
+
|
405 |
+
def __len__(self):
|
406 |
+
return self.num_samples // self.batch_size
|
logs/hanser/G_8000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:782249a78ac551bda545bdf2126bd20acec871d0f69a027f5047b6f87564e68d
|
3 |
+
size 857912255
|
losses.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def feature_loss(fmap_r, fmap_g):
|
5 |
+
loss = 0
|
6 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
7 |
+
for rl, gl in zip(dr, dg):
|
8 |
+
rl = rl.float().detach()
|
9 |
+
gl = gl.float()
|
10 |
+
loss += torch.mean(torch.abs(rl - gl))
|
11 |
+
|
12 |
+
return loss * 2
|
13 |
+
|
14 |
+
|
15 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
16 |
+
loss = 0
|
17 |
+
r_losses = []
|
18 |
+
g_losses = []
|
19 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
20 |
+
dr = dr.float()
|
21 |
+
dg = dg.float()
|
22 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
23 |
+
g_loss = torch.mean(dg**2)
|
24 |
+
loss += r_loss + g_loss
|
25 |
+
r_losses.append(r_loss.item())
|
26 |
+
g_losses.append(g_loss.item())
|
27 |
+
|
28 |
+
return loss, r_losses, g_losses
|
29 |
+
|
30 |
+
|
31 |
+
def generator_loss(disc_outputs):
|
32 |
+
loss = 0
|
33 |
+
gen_losses = []
|
34 |
+
for dg in disc_outputs:
|
35 |
+
dg = dg.float()
|
36 |
+
l = torch.mean((1 - dg) ** 2)
|
37 |
+
gen_losses.append(l)
|
38 |
+
loss += l
|
39 |
+
|
40 |
+
return loss, gen_losses
|
41 |
+
|
42 |
+
|
43 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
44 |
+
"""
|
45 |
+
z_p, logs_q: [b, h, t_t]
|
46 |
+
m_p, logs_p: [b, h, t_t]
|
47 |
+
"""
|
48 |
+
z_p = z_p.float()
|
49 |
+
logs_q = logs_q.float()
|
50 |
+
m_p = m_p.float()
|
51 |
+
logs_p = logs_p.float()
|
52 |
+
z_mask = z_mask.float()
|
53 |
+
|
54 |
+
kl = logs_p - logs_q - 0.5
|
55 |
+
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
56 |
+
kl = torch.sum(kl * z_mask)
|
57 |
+
l = kl / torch.sum(z_mask)
|
58 |
+
return l
|
mel_processing.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.utils.data
|
3 |
+
from librosa.filters import mel as librosa_mel_fn
|
4 |
+
|
5 |
+
MAX_WAV_VALUE = 32768.0
|
6 |
+
|
7 |
+
|
8 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
9 |
+
"""
|
10 |
+
PARAMS
|
11 |
+
------
|
12 |
+
C: compression factor
|
13 |
+
"""
|
14 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
15 |
+
|
16 |
+
|
17 |
+
def dynamic_range_decompression_torch(x, C=1):
|
18 |
+
"""
|
19 |
+
PARAMS
|
20 |
+
------
|
21 |
+
C: compression factor used to compress
|
22 |
+
"""
|
23 |
+
return torch.exp(x) / C
|
24 |
+
|
25 |
+
|
26 |
+
def spectral_normalize_torch(magnitudes):
|
27 |
+
output = dynamic_range_compression_torch(magnitudes)
|
28 |
+
return output
|
29 |
+
|
30 |
+
|
31 |
+
def spectral_de_normalize_torch(magnitudes):
|
32 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
mel_basis = {}
|
37 |
+
hann_window = {}
|
38 |
+
|
39 |
+
|
40 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
41 |
+
if torch.min(y) < -1.0:
|
42 |
+
print("min value is ", torch.min(y))
|
43 |
+
if torch.max(y) > 1.0:
|
44 |
+
print("max value is ", torch.max(y))
|
45 |
+
|
46 |
+
global hann_window
|
47 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
48 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
49 |
+
if wnsize_dtype_device not in hann_window:
|
50 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
51 |
+
dtype=y.dtype, device=y.device
|
52 |
+
)
|
53 |
+
|
54 |
+
y = torch.nn.functional.pad(
|
55 |
+
y.unsqueeze(1),
|
56 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
57 |
+
mode="reflect",
|
58 |
+
)
|
59 |
+
y = y.squeeze(1)
|
60 |
+
|
61 |
+
spec = torch.stft(
|
62 |
+
y,
|
63 |
+
n_fft,
|
64 |
+
hop_length=hop_size,
|
65 |
+
win_length=win_size,
|
66 |
+
window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center,
|
68 |
+
pad_mode="reflect",
|
69 |
+
normalized=False,
|
70 |
+
onesided=True,
|
71 |
+
return_complex=False,
|
72 |
+
)
|
73 |
+
|
74 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
75 |
+
return spec
|
76 |
+
|
77 |
+
|
78 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
79 |
+
global mel_basis
|
80 |
+
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
81 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
82 |
+
if fmax_dtype_device not in mel_basis:
|
83 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
84 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
85 |
+
dtype=spec.dtype, device=spec.device
|
86 |
+
)
|
87 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
88 |
+
spec = spectral_normalize_torch(spec)
|
89 |
+
return spec
|
90 |
+
|
91 |
+
|
92 |
+
def mel_spectrogram_torch(
|
93 |
+
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
94 |
+
):
|
95 |
+
if torch.min(y) < -1.0:
|
96 |
+
print("min value is ", torch.min(y))
|
97 |
+
if torch.max(y) > 1.0:
|
98 |
+
print("max value is ", torch.max(y))
|
99 |
+
|
100 |
+
global mel_basis, hann_window
|
101 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
102 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
103 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
104 |
+
if fmax_dtype_device not in mel_basis:
|
105 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
106 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
107 |
+
dtype=y.dtype, device=y.device
|
108 |
+
)
|
109 |
+
if wnsize_dtype_device not in hann_window:
|
110 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
111 |
+
dtype=y.dtype, device=y.device
|
112 |
+
)
|
113 |
+
|
114 |
+
y = torch.nn.functional.pad(
|
115 |
+
y.unsqueeze(1),
|
116 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
117 |
+
mode="reflect",
|
118 |
+
)
|
119 |
+
y = y.squeeze(1)
|
120 |
+
|
121 |
+
spec = torch.stft(
|
122 |
+
y,
|
123 |
+
n_fft,
|
124 |
+
hop_length=hop_size,
|
125 |
+
win_length=win_size,
|
126 |
+
window=hann_window[wnsize_dtype_device],
|
127 |
+
center=center,
|
128 |
+
pad_mode="reflect",
|
129 |
+
normalized=False,
|
130 |
+
onesided=True,
|
131 |
+
return_complex=False,
|
132 |
+
)
|
133 |
+
|
134 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
135 |
+
|
136 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
137 |
+
spec = spectral_normalize_torch(spec)
|
138 |
+
|
139 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,986 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import modules
|
8 |
+
import attentions
|
9 |
+
import monotonic_align
|
10 |
+
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
from text import symbols, num_tones, num_languages
|
16 |
+
|
17 |
+
|
18 |
+
class DurationDiscriminator(nn.Module): # vits2
|
19 |
+
def __init__(
|
20 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
self.in_channels = in_channels
|
25 |
+
self.filter_channels = filter_channels
|
26 |
+
self.kernel_size = kernel_size
|
27 |
+
self.p_dropout = p_dropout
|
28 |
+
self.gin_channels = gin_channels
|
29 |
+
|
30 |
+
self.drop = nn.Dropout(p_dropout)
|
31 |
+
self.conv_1 = nn.Conv1d(
|
32 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
33 |
+
)
|
34 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
35 |
+
self.conv_2 = nn.Conv1d(
|
36 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
37 |
+
)
|
38 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
39 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
40 |
+
|
41 |
+
self.pre_out_conv_1 = nn.Conv1d(
|
42 |
+
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
43 |
+
)
|
44 |
+
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
45 |
+
self.pre_out_conv_2 = nn.Conv1d(
|
46 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
47 |
+
)
|
48 |
+
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
49 |
+
|
50 |
+
if gin_channels != 0:
|
51 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
52 |
+
|
53 |
+
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
|
54 |
+
|
55 |
+
def forward_probability(self, x, x_mask, dur, g=None):
|
56 |
+
dur = self.dur_proj(dur)
|
57 |
+
x = torch.cat([x, dur], dim=1)
|
58 |
+
x = self.pre_out_conv_1(x * x_mask)
|
59 |
+
x = torch.relu(x)
|
60 |
+
x = self.pre_out_norm_1(x)
|
61 |
+
x = self.drop(x)
|
62 |
+
x = self.pre_out_conv_2(x * x_mask)
|
63 |
+
x = torch.relu(x)
|
64 |
+
x = self.pre_out_norm_2(x)
|
65 |
+
x = self.drop(x)
|
66 |
+
x = x * x_mask
|
67 |
+
x = x.transpose(1, 2)
|
68 |
+
output_prob = self.output_layer(x)
|
69 |
+
return output_prob
|
70 |
+
|
71 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
72 |
+
x = torch.detach(x)
|
73 |
+
if g is not None:
|
74 |
+
g = torch.detach(g)
|
75 |
+
x = x + self.cond(g)
|
76 |
+
x = self.conv_1(x * x_mask)
|
77 |
+
x = torch.relu(x)
|
78 |
+
x = self.norm_1(x)
|
79 |
+
x = self.drop(x)
|
80 |
+
x = self.conv_2(x * x_mask)
|
81 |
+
x = torch.relu(x)
|
82 |
+
x = self.norm_2(x)
|
83 |
+
x = self.drop(x)
|
84 |
+
|
85 |
+
output_probs = []
|
86 |
+
for dur in [dur_r, dur_hat]:
|
87 |
+
output_prob = self.forward_probability(x, x_mask, dur, g)
|
88 |
+
output_probs.append(output_prob)
|
89 |
+
|
90 |
+
return output_probs
|
91 |
+
|
92 |
+
|
93 |
+
class TransformerCouplingBlock(nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
channels,
|
97 |
+
hidden_channels,
|
98 |
+
filter_channels,
|
99 |
+
n_heads,
|
100 |
+
n_layers,
|
101 |
+
kernel_size,
|
102 |
+
p_dropout,
|
103 |
+
n_flows=4,
|
104 |
+
gin_channels=0,
|
105 |
+
share_parameter=False,
|
106 |
+
):
|
107 |
+
super().__init__()
|
108 |
+
self.channels = channels
|
109 |
+
self.hidden_channels = hidden_channels
|
110 |
+
self.kernel_size = kernel_size
|
111 |
+
self.n_layers = n_layers
|
112 |
+
self.n_flows = n_flows
|
113 |
+
self.gin_channels = gin_channels
|
114 |
+
|
115 |
+
self.flows = nn.ModuleList()
|
116 |
+
|
117 |
+
self.wn = (
|
118 |
+
attentions.FFT(
|
119 |
+
hidden_channels,
|
120 |
+
filter_channels,
|
121 |
+
n_heads,
|
122 |
+
n_layers,
|
123 |
+
kernel_size,
|
124 |
+
p_dropout,
|
125 |
+
isflow=True,
|
126 |
+
gin_channels=self.gin_channels,
|
127 |
+
)
|
128 |
+
if share_parameter
|
129 |
+
else None
|
130 |
+
)
|
131 |
+
|
132 |
+
for i in range(n_flows):
|
133 |
+
self.flows.append(
|
134 |
+
modules.TransformerCouplingLayer(
|
135 |
+
channels,
|
136 |
+
hidden_channels,
|
137 |
+
kernel_size,
|
138 |
+
n_layers,
|
139 |
+
n_heads,
|
140 |
+
p_dropout,
|
141 |
+
filter_channels,
|
142 |
+
mean_only=True,
|
143 |
+
wn_sharing_parameter=self.wn,
|
144 |
+
gin_channels=self.gin_channels,
|
145 |
+
)
|
146 |
+
)
|
147 |
+
self.flows.append(modules.Flip())
|
148 |
+
|
149 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
150 |
+
if not reverse:
|
151 |
+
for flow in self.flows:
|
152 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
153 |
+
else:
|
154 |
+
for flow in reversed(self.flows):
|
155 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
156 |
+
return x
|
157 |
+
|
158 |
+
|
159 |
+
class StochasticDurationPredictor(nn.Module):
|
160 |
+
def __init__(
|
161 |
+
self,
|
162 |
+
in_channels,
|
163 |
+
filter_channels,
|
164 |
+
kernel_size,
|
165 |
+
p_dropout,
|
166 |
+
n_flows=4,
|
167 |
+
gin_channels=0,
|
168 |
+
):
|
169 |
+
super().__init__()
|
170 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
171 |
+
self.in_channels = in_channels
|
172 |
+
self.filter_channels = filter_channels
|
173 |
+
self.kernel_size = kernel_size
|
174 |
+
self.p_dropout = p_dropout
|
175 |
+
self.n_flows = n_flows
|
176 |
+
self.gin_channels = gin_channels
|
177 |
+
|
178 |
+
self.log_flow = modules.Log()
|
179 |
+
self.flows = nn.ModuleList()
|
180 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
181 |
+
for i in range(n_flows):
|
182 |
+
self.flows.append(
|
183 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
184 |
+
)
|
185 |
+
self.flows.append(modules.Flip())
|
186 |
+
|
187 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
188 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
189 |
+
self.post_convs = modules.DDSConv(
|
190 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
191 |
+
)
|
192 |
+
self.post_flows = nn.ModuleList()
|
193 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
194 |
+
for i in range(4):
|
195 |
+
self.post_flows.append(
|
196 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
197 |
+
)
|
198 |
+
self.post_flows.append(modules.Flip())
|
199 |
+
|
200 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
201 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
202 |
+
self.convs = modules.DDSConv(
|
203 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
204 |
+
)
|
205 |
+
if gin_channels != 0:
|
206 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
207 |
+
|
208 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
209 |
+
x = torch.detach(x)
|
210 |
+
x = self.pre(x)
|
211 |
+
if g is not None:
|
212 |
+
g = torch.detach(g)
|
213 |
+
x = x + self.cond(g)
|
214 |
+
x = self.convs(x, x_mask)
|
215 |
+
x = self.proj(x) * x_mask
|
216 |
+
|
217 |
+
if not reverse:
|
218 |
+
flows = self.flows
|
219 |
+
assert w is not None
|
220 |
+
|
221 |
+
logdet_tot_q = 0
|
222 |
+
h_w = self.post_pre(w)
|
223 |
+
h_w = self.post_convs(h_w, x_mask)
|
224 |
+
h_w = self.post_proj(h_w) * x_mask
|
225 |
+
e_q = (
|
226 |
+
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
227 |
+
* x_mask
|
228 |
+
)
|
229 |
+
z_q = e_q
|
230 |
+
for flow in self.post_flows:
|
231 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
232 |
+
logdet_tot_q += logdet_q
|
233 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
234 |
+
u = torch.sigmoid(z_u) * x_mask
|
235 |
+
z0 = (w - u) * x_mask
|
236 |
+
logdet_tot_q += torch.sum(
|
237 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
238 |
+
)
|
239 |
+
logq = (
|
240 |
+
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
241 |
+
- logdet_tot_q
|
242 |
+
)
|
243 |
+
|
244 |
+
logdet_tot = 0
|
245 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
246 |
+
logdet_tot += logdet
|
247 |
+
z = torch.cat([z0, z1], 1)
|
248 |
+
for flow in flows:
|
249 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
250 |
+
logdet_tot = logdet_tot + logdet
|
251 |
+
nll = (
|
252 |
+
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
253 |
+
- logdet_tot
|
254 |
+
)
|
255 |
+
return nll + logq # [b]
|
256 |
+
else:
|
257 |
+
flows = list(reversed(self.flows))
|
258 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
259 |
+
z = (
|
260 |
+
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
261 |
+
* noise_scale
|
262 |
+
)
|
263 |
+
for flow in flows:
|
264 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
265 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
266 |
+
logw = z0
|
267 |
+
return logw
|
268 |
+
|
269 |
+
|
270 |
+
class DurationPredictor(nn.Module):
|
271 |
+
def __init__(
|
272 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
273 |
+
):
|
274 |
+
super().__init__()
|
275 |
+
|
276 |
+
self.in_channels = in_channels
|
277 |
+
self.filter_channels = filter_channels
|
278 |
+
self.kernel_size = kernel_size
|
279 |
+
self.p_dropout = p_dropout
|
280 |
+
self.gin_channels = gin_channels
|
281 |
+
|
282 |
+
self.drop = nn.Dropout(p_dropout)
|
283 |
+
self.conv_1 = nn.Conv1d(
|
284 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
285 |
+
)
|
286 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
287 |
+
self.conv_2 = nn.Conv1d(
|
288 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
289 |
+
)
|
290 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
291 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
292 |
+
|
293 |
+
if gin_channels != 0:
|
294 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
295 |
+
|
296 |
+
def forward(self, x, x_mask, g=None):
|
297 |
+
x = torch.detach(x)
|
298 |
+
if g is not None:
|
299 |
+
g = torch.detach(g)
|
300 |
+
x = x + self.cond(g)
|
301 |
+
x = self.conv_1(x * x_mask)
|
302 |
+
x = torch.relu(x)
|
303 |
+
x = self.norm_1(x)
|
304 |
+
x = self.drop(x)
|
305 |
+
x = self.conv_2(x * x_mask)
|
306 |
+
x = torch.relu(x)
|
307 |
+
x = self.norm_2(x)
|
308 |
+
x = self.drop(x)
|
309 |
+
x = self.proj(x * x_mask)
|
310 |
+
return x * x_mask
|
311 |
+
|
312 |
+
|
313 |
+
class TextEncoder(nn.Module):
|
314 |
+
def __init__(
|
315 |
+
self,
|
316 |
+
n_vocab,
|
317 |
+
out_channels,
|
318 |
+
hidden_channels,
|
319 |
+
filter_channels,
|
320 |
+
n_heads,
|
321 |
+
n_layers,
|
322 |
+
kernel_size,
|
323 |
+
p_dropout,
|
324 |
+
gin_channels=0,
|
325 |
+
):
|
326 |
+
super().__init__()
|
327 |
+
self.n_vocab = n_vocab
|
328 |
+
self.out_channels = out_channels
|
329 |
+
self.hidden_channels = hidden_channels
|
330 |
+
self.filter_channels = filter_channels
|
331 |
+
self.n_heads = n_heads
|
332 |
+
self.n_layers = n_layers
|
333 |
+
self.kernel_size = kernel_size
|
334 |
+
self.p_dropout = p_dropout
|
335 |
+
self.gin_channels = gin_channels
|
336 |
+
self.emb = nn.Embedding(len(symbols), hidden_channels)
|
337 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
338 |
+
self.tone_emb = nn.Embedding(num_tones, hidden_channels)
|
339 |
+
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
|
340 |
+
self.language_emb = nn.Embedding(num_languages, hidden_channels)
|
341 |
+
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
|
342 |
+
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
343 |
+
self.ja_bert_proj = nn.Conv1d(768, hidden_channels, 1)
|
344 |
+
|
345 |
+
self.encoder = attentions.Encoder(
|
346 |
+
hidden_channels,
|
347 |
+
filter_channels,
|
348 |
+
n_heads,
|
349 |
+
n_layers,
|
350 |
+
kernel_size,
|
351 |
+
p_dropout,
|
352 |
+
gin_channels=self.gin_channels,
|
353 |
+
)
|
354 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
355 |
+
|
356 |
+
def forward(self, x, x_lengths, tone, language, bert, ja_bert, g=None):
|
357 |
+
bert_emb = self.bert_proj(bert).transpose(1, 2)
|
358 |
+
ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
|
359 |
+
x = (
|
360 |
+
self.emb(x)
|
361 |
+
+ self.tone_emb(tone)
|
362 |
+
+ self.language_emb(language)
|
363 |
+
+ bert_emb
|
364 |
+
+ ja_bert_emb
|
365 |
+
) * math.sqrt(
|
366 |
+
self.hidden_channels
|
367 |
+
) # [b, t, h]
|
368 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
369 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
370 |
+
x.dtype
|
371 |
+
)
|
372 |
+
|
373 |
+
x = self.encoder(x * x_mask, x_mask, g=g)
|
374 |
+
stats = self.proj(x) * x_mask
|
375 |
+
|
376 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
377 |
+
return x, m, logs, x_mask
|
378 |
+
|
379 |
+
|
380 |
+
class ResidualCouplingBlock(nn.Module):
|
381 |
+
def __init__(
|
382 |
+
self,
|
383 |
+
channels,
|
384 |
+
hidden_channels,
|
385 |
+
kernel_size,
|
386 |
+
dilation_rate,
|
387 |
+
n_layers,
|
388 |
+
n_flows=4,
|
389 |
+
gin_channels=0,
|
390 |
+
):
|
391 |
+
super().__init__()
|
392 |
+
self.channels = channels
|
393 |
+
self.hidden_channels = hidden_channels
|
394 |
+
self.kernel_size = kernel_size
|
395 |
+
self.dilation_rate = dilation_rate
|
396 |
+
self.n_layers = n_layers
|
397 |
+
self.n_flows = n_flows
|
398 |
+
self.gin_channels = gin_channels
|
399 |
+
|
400 |
+
self.flows = nn.ModuleList()
|
401 |
+
for i in range(n_flows):
|
402 |
+
self.flows.append(
|
403 |
+
modules.ResidualCouplingLayer(
|
404 |
+
channels,
|
405 |
+
hidden_channels,
|
406 |
+
kernel_size,
|
407 |
+
dilation_rate,
|
408 |
+
n_layers,
|
409 |
+
gin_channels=gin_channels,
|
410 |
+
mean_only=True,
|
411 |
+
)
|
412 |
+
)
|
413 |
+
self.flows.append(modules.Flip())
|
414 |
+
|
415 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
416 |
+
if not reverse:
|
417 |
+
for flow in self.flows:
|
418 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
419 |
+
else:
|
420 |
+
for flow in reversed(self.flows):
|
421 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
422 |
+
return x
|
423 |
+
|
424 |
+
|
425 |
+
class PosteriorEncoder(nn.Module):
|
426 |
+
def __init__(
|
427 |
+
self,
|
428 |
+
in_channels,
|
429 |
+
out_channels,
|
430 |
+
hidden_channels,
|
431 |
+
kernel_size,
|
432 |
+
dilation_rate,
|
433 |
+
n_layers,
|
434 |
+
gin_channels=0,
|
435 |
+
):
|
436 |
+
super().__init__()
|
437 |
+
self.in_channels = in_channels
|
438 |
+
self.out_channels = out_channels
|
439 |
+
self.hidden_channels = hidden_channels
|
440 |
+
self.kernel_size = kernel_size
|
441 |
+
self.dilation_rate = dilation_rate
|
442 |
+
self.n_layers = n_layers
|
443 |
+
self.gin_channels = gin_channels
|
444 |
+
|
445 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
446 |
+
self.enc = modules.WN(
|
447 |
+
hidden_channels,
|
448 |
+
kernel_size,
|
449 |
+
dilation_rate,
|
450 |
+
n_layers,
|
451 |
+
gin_channels=gin_channels,
|
452 |
+
)
|
453 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
454 |
+
|
455 |
+
def forward(self, x, x_lengths, g=None):
|
456 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
457 |
+
x.dtype
|
458 |
+
)
|
459 |
+
x = self.pre(x) * x_mask
|
460 |
+
x = self.enc(x, x_mask, g=g)
|
461 |
+
stats = self.proj(x) * x_mask
|
462 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
463 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
464 |
+
return z, m, logs, x_mask
|
465 |
+
|
466 |
+
|
467 |
+
class Generator(torch.nn.Module):
|
468 |
+
def __init__(
|
469 |
+
self,
|
470 |
+
initial_channel,
|
471 |
+
resblock,
|
472 |
+
resblock_kernel_sizes,
|
473 |
+
resblock_dilation_sizes,
|
474 |
+
upsample_rates,
|
475 |
+
upsample_initial_channel,
|
476 |
+
upsample_kernel_sizes,
|
477 |
+
gin_channels=0,
|
478 |
+
):
|
479 |
+
super(Generator, self).__init__()
|
480 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
481 |
+
self.num_upsamples = len(upsample_rates)
|
482 |
+
self.conv_pre = Conv1d(
|
483 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
484 |
+
)
|
485 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
486 |
+
|
487 |
+
self.ups = nn.ModuleList()
|
488 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
489 |
+
self.ups.append(
|
490 |
+
weight_norm(
|
491 |
+
ConvTranspose1d(
|
492 |
+
upsample_initial_channel // (2**i),
|
493 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
494 |
+
k,
|
495 |
+
u,
|
496 |
+
padding=(k - u) // 2,
|
497 |
+
)
|
498 |
+
)
|
499 |
+
)
|
500 |
+
|
501 |
+
self.resblocks = nn.ModuleList()
|
502 |
+
for i in range(len(self.ups)):
|
503 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
504 |
+
for j, (k, d) in enumerate(
|
505 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
506 |
+
):
|
507 |
+
self.resblocks.append(resblock(ch, k, d))
|
508 |
+
|
509 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
510 |
+
self.ups.apply(init_weights)
|
511 |
+
|
512 |
+
if gin_channels != 0:
|
513 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
514 |
+
|
515 |
+
def forward(self, x, g=None):
|
516 |
+
x = self.conv_pre(x)
|
517 |
+
if g is not None:
|
518 |
+
x = x + self.cond(g)
|
519 |
+
|
520 |
+
for i in range(self.num_upsamples):
|
521 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
522 |
+
x = self.ups[i](x)
|
523 |
+
xs = None
|
524 |
+
for j in range(self.num_kernels):
|
525 |
+
if xs is None:
|
526 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
527 |
+
else:
|
528 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
529 |
+
x = xs / self.num_kernels
|
530 |
+
x = F.leaky_relu(x)
|
531 |
+
x = self.conv_post(x)
|
532 |
+
x = torch.tanh(x)
|
533 |
+
|
534 |
+
return x
|
535 |
+
|
536 |
+
def remove_weight_norm(self):
|
537 |
+
print("Removing weight norm...")
|
538 |
+
for layer in self.ups:
|
539 |
+
remove_weight_norm(layer)
|
540 |
+
for layer in self.resblocks:
|
541 |
+
layer.remove_weight_norm()
|
542 |
+
|
543 |
+
|
544 |
+
class DiscriminatorP(torch.nn.Module):
|
545 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
546 |
+
super(DiscriminatorP, self).__init__()
|
547 |
+
self.period = period
|
548 |
+
self.use_spectral_norm = use_spectral_norm
|
549 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
550 |
+
self.convs = nn.ModuleList(
|
551 |
+
[
|
552 |
+
norm_f(
|
553 |
+
Conv2d(
|
554 |
+
1,
|
555 |
+
32,
|
556 |
+
(kernel_size, 1),
|
557 |
+
(stride, 1),
|
558 |
+
padding=(get_padding(kernel_size, 1), 0),
|
559 |
+
)
|
560 |
+
),
|
561 |
+
norm_f(
|
562 |
+
Conv2d(
|
563 |
+
32,
|
564 |
+
128,
|
565 |
+
(kernel_size, 1),
|
566 |
+
(stride, 1),
|
567 |
+
padding=(get_padding(kernel_size, 1), 0),
|
568 |
+
)
|
569 |
+
),
|
570 |
+
norm_f(
|
571 |
+
Conv2d(
|
572 |
+
128,
|
573 |
+
512,
|
574 |
+
(kernel_size, 1),
|
575 |
+
(stride, 1),
|
576 |
+
padding=(get_padding(kernel_size, 1), 0),
|
577 |
+
)
|
578 |
+
),
|
579 |
+
norm_f(
|
580 |
+
Conv2d(
|
581 |
+
512,
|
582 |
+
1024,
|
583 |
+
(kernel_size, 1),
|
584 |
+
(stride, 1),
|
585 |
+
padding=(get_padding(kernel_size, 1), 0),
|
586 |
+
)
|
587 |
+
),
|
588 |
+
norm_f(
|
589 |
+
Conv2d(
|
590 |
+
1024,
|
591 |
+
1024,
|
592 |
+
(kernel_size, 1),
|
593 |
+
1,
|
594 |
+
padding=(get_padding(kernel_size, 1), 0),
|
595 |
+
)
|
596 |
+
),
|
597 |
+
]
|
598 |
+
)
|
599 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
600 |
+
|
601 |
+
def forward(self, x):
|
602 |
+
fmap = []
|
603 |
+
|
604 |
+
# 1d to 2d
|
605 |
+
b, c, t = x.shape
|
606 |
+
if t % self.period != 0: # pad first
|
607 |
+
n_pad = self.period - (t % self.period)
|
608 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
609 |
+
t = t + n_pad
|
610 |
+
x = x.view(b, c, t // self.period, self.period)
|
611 |
+
|
612 |
+
for layer in self.convs:
|
613 |
+
x = layer(x)
|
614 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
615 |
+
fmap.append(x)
|
616 |
+
x = self.conv_post(x)
|
617 |
+
fmap.append(x)
|
618 |
+
x = torch.flatten(x, 1, -1)
|
619 |
+
|
620 |
+
return x, fmap
|
621 |
+
|
622 |
+
|
623 |
+
class DiscriminatorS(torch.nn.Module):
|
624 |
+
def __init__(self, use_spectral_norm=False):
|
625 |
+
super(DiscriminatorS, self).__init__()
|
626 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
627 |
+
self.convs = nn.ModuleList(
|
628 |
+
[
|
629 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
630 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
631 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
632 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
633 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
634 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
635 |
+
]
|
636 |
+
)
|
637 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
638 |
+
|
639 |
+
def forward(self, x):
|
640 |
+
fmap = []
|
641 |
+
|
642 |
+
for layer in self.convs:
|
643 |
+
x = layer(x)
|
644 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
645 |
+
fmap.append(x)
|
646 |
+
x = self.conv_post(x)
|
647 |
+
fmap.append(x)
|
648 |
+
x = torch.flatten(x, 1, -1)
|
649 |
+
|
650 |
+
return x, fmap
|
651 |
+
|
652 |
+
|
653 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
654 |
+
def __init__(self, use_spectral_norm=False):
|
655 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
656 |
+
periods = [2, 3, 5, 7, 11]
|
657 |
+
|
658 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
659 |
+
discs = discs + [
|
660 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
661 |
+
]
|
662 |
+
self.discriminators = nn.ModuleList(discs)
|
663 |
+
|
664 |
+
def forward(self, y, y_hat):
|
665 |
+
y_d_rs = []
|
666 |
+
y_d_gs = []
|
667 |
+
fmap_rs = []
|
668 |
+
fmap_gs = []
|
669 |
+
for i, d in enumerate(self.discriminators):
|
670 |
+
y_d_r, fmap_r = d(y)
|
671 |
+
y_d_g, fmap_g = d(y_hat)
|
672 |
+
y_d_rs.append(y_d_r)
|
673 |
+
y_d_gs.append(y_d_g)
|
674 |
+
fmap_rs.append(fmap_r)
|
675 |
+
fmap_gs.append(fmap_g)
|
676 |
+
|
677 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
678 |
+
|
679 |
+
|
680 |
+
class ReferenceEncoder(nn.Module):
|
681 |
+
"""
|
682 |
+
inputs --- [N, Ty/r, n_mels*r] mels
|
683 |
+
outputs --- [N, ref_enc_gru_size]
|
684 |
+
"""
|
685 |
+
|
686 |
+
def __init__(self, spec_channels, gin_channels=0):
|
687 |
+
super().__init__()
|
688 |
+
self.spec_channels = spec_channels
|
689 |
+
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
690 |
+
K = len(ref_enc_filters)
|
691 |
+
filters = [1] + ref_enc_filters
|
692 |
+
convs = [
|
693 |
+
weight_norm(
|
694 |
+
nn.Conv2d(
|
695 |
+
in_channels=filters[i],
|
696 |
+
out_channels=filters[i + 1],
|
697 |
+
kernel_size=(3, 3),
|
698 |
+
stride=(2, 2),
|
699 |
+
padding=(1, 1),
|
700 |
+
)
|
701 |
+
)
|
702 |
+
for i in range(K)
|
703 |
+
]
|
704 |
+
self.convs = nn.ModuleList(convs)
|
705 |
+
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
|
706 |
+
|
707 |
+
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
708 |
+
self.gru = nn.GRU(
|
709 |
+
input_size=ref_enc_filters[-1] * out_channels,
|
710 |
+
hidden_size=256 // 2,
|
711 |
+
batch_first=True,
|
712 |
+
)
|
713 |
+
self.proj = nn.Linear(128, gin_channels)
|
714 |
+
|
715 |
+
def forward(self, inputs, mask=None):
|
716 |
+
N = inputs.size(0)
|
717 |
+
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
718 |
+
for conv in self.convs:
|
719 |
+
out = conv(out)
|
720 |
+
# out = wn(out)
|
721 |
+
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
722 |
+
|
723 |
+
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
724 |
+
T = out.size(1)
|
725 |
+
N = out.size(0)
|
726 |
+
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
727 |
+
|
728 |
+
self.gru.flatten_parameters()
|
729 |
+
memory, out = self.gru(out) # out --- [1, N, 128]
|
730 |
+
|
731 |
+
return self.proj(out.squeeze(0))
|
732 |
+
|
733 |
+
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
734 |
+
for i in range(n_convs):
|
735 |
+
L = (L - kernel_size + 2 * pad) // stride + 1
|
736 |
+
return L
|
737 |
+
|
738 |
+
|
739 |
+
class SynthesizerTrn(nn.Module):
|
740 |
+
"""
|
741 |
+
Synthesizer for Training
|
742 |
+
"""
|
743 |
+
|
744 |
+
def __init__(
|
745 |
+
self,
|
746 |
+
n_vocab,
|
747 |
+
spec_channels,
|
748 |
+
segment_size,
|
749 |
+
inter_channels,
|
750 |
+
hidden_channels,
|
751 |
+
filter_channels,
|
752 |
+
n_heads,
|
753 |
+
n_layers,
|
754 |
+
kernel_size,
|
755 |
+
p_dropout,
|
756 |
+
resblock,
|
757 |
+
resblock_kernel_sizes,
|
758 |
+
resblock_dilation_sizes,
|
759 |
+
upsample_rates,
|
760 |
+
upsample_initial_channel,
|
761 |
+
upsample_kernel_sizes,
|
762 |
+
n_speakers=256,
|
763 |
+
gin_channels=256,
|
764 |
+
use_sdp=True,
|
765 |
+
n_flow_layer=4,
|
766 |
+
n_layers_trans_flow=6,
|
767 |
+
flow_share_parameter=False,
|
768 |
+
use_transformer_flow=True,
|
769 |
+
**kwargs
|
770 |
+
):
|
771 |
+
super().__init__()
|
772 |
+
self.n_vocab = n_vocab
|
773 |
+
self.spec_channels = spec_channels
|
774 |
+
self.inter_channels = inter_channels
|
775 |
+
self.hidden_channels = hidden_channels
|
776 |
+
self.filter_channels = filter_channels
|
777 |
+
self.n_heads = n_heads
|
778 |
+
self.n_layers = n_layers
|
779 |
+
self.kernel_size = kernel_size
|
780 |
+
self.p_dropout = p_dropout
|
781 |
+
self.resblock = resblock
|
782 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
783 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
784 |
+
self.upsample_rates = upsample_rates
|
785 |
+
self.upsample_initial_channel = upsample_initial_channel
|
786 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
787 |
+
self.segment_size = segment_size
|
788 |
+
self.n_speakers = n_speakers
|
789 |
+
self.gin_channels = gin_channels
|
790 |
+
self.n_layers_trans_flow = n_layers_trans_flow
|
791 |
+
self.use_spk_conditioned_encoder = kwargs.get(
|
792 |
+
"use_spk_conditioned_encoder", True
|
793 |
+
)
|
794 |
+
self.use_sdp = use_sdp
|
795 |
+
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
796 |
+
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
797 |
+
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
798 |
+
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
799 |
+
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
800 |
+
self.enc_gin_channels = gin_channels
|
801 |
+
self.enc_p = TextEncoder(
|
802 |
+
n_vocab,
|
803 |
+
inter_channels,
|
804 |
+
hidden_channels,
|
805 |
+
filter_channels,
|
806 |
+
n_heads,
|
807 |
+
n_layers,
|
808 |
+
kernel_size,
|
809 |
+
p_dropout,
|
810 |
+
gin_channels=self.enc_gin_channels,
|
811 |
+
)
|
812 |
+
self.dec = Generator(
|
813 |
+
inter_channels,
|
814 |
+
resblock,
|
815 |
+
resblock_kernel_sizes,
|
816 |
+
resblock_dilation_sizes,
|
817 |
+
upsample_rates,
|
818 |
+
upsample_initial_channel,
|
819 |
+
upsample_kernel_sizes,
|
820 |
+
gin_channels=gin_channels,
|
821 |
+
)
|
822 |
+
self.enc_q = PosteriorEncoder(
|
823 |
+
spec_channels,
|
824 |
+
inter_channels,
|
825 |
+
hidden_channels,
|
826 |
+
5,
|
827 |
+
1,
|
828 |
+
16,
|
829 |
+
gin_channels=gin_channels,
|
830 |
+
)
|
831 |
+
if use_transformer_flow:
|
832 |
+
self.flow = TransformerCouplingBlock(
|
833 |
+
inter_channels,
|
834 |
+
hidden_channels,
|
835 |
+
filter_channels,
|
836 |
+
n_heads,
|
837 |
+
n_layers_trans_flow,
|
838 |
+
5,
|
839 |
+
p_dropout,
|
840 |
+
n_flow_layer,
|
841 |
+
gin_channels=gin_channels,
|
842 |
+
share_parameter=flow_share_parameter,
|
843 |
+
)
|
844 |
+
else:
|
845 |
+
self.flow = ResidualCouplingBlock(
|
846 |
+
inter_channels,
|
847 |
+
hidden_channels,
|
848 |
+
5,
|
849 |
+
1,
|
850 |
+
n_flow_layer,
|
851 |
+
gin_channels=gin_channels,
|
852 |
+
)
|
853 |
+
self.sdp = StochasticDurationPredictor(
|
854 |
+
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
855 |
+
)
|
856 |
+
self.dp = DurationPredictor(
|
857 |
+
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
858 |
+
)
|
859 |
+
|
860 |
+
if n_speakers > 1:
|
861 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
862 |
+
else:
|
863 |
+
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
|
864 |
+
|
865 |
+
def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert, ja_bert):
|
866 |
+
if self.n_speakers > 0:
|
867 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
868 |
+
else:
|
869 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
870 |
+
x, m_p, logs_p, x_mask = self.enc_p(
|
871 |
+
x, x_lengths, tone, language, bert, ja_bert, g=g
|
872 |
+
)
|
873 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
874 |
+
z_p = self.flow(z, y_mask, g=g)
|
875 |
+
|
876 |
+
with torch.no_grad():
|
877 |
+
# negative cross-entropy
|
878 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
879 |
+
neg_cent1 = torch.sum(
|
880 |
+
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
881 |
+
) # [b, 1, t_s]
|
882 |
+
neg_cent2 = torch.matmul(
|
883 |
+
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
884 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
885 |
+
neg_cent3 = torch.matmul(
|
886 |
+
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
887 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
888 |
+
neg_cent4 = torch.sum(
|
889 |
+
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
890 |
+
) # [b, 1, t_s]
|
891 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
892 |
+
if self.use_noise_scaled_mas:
|
893 |
+
epsilon = (
|
894 |
+
torch.std(neg_cent)
|
895 |
+
* torch.randn_like(neg_cent)
|
896 |
+
* self.current_mas_noise_scale
|
897 |
+
)
|
898 |
+
neg_cent = neg_cent + epsilon
|
899 |
+
|
900 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
901 |
+
attn = (
|
902 |
+
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
903 |
+
.unsqueeze(1)
|
904 |
+
.detach()
|
905 |
+
)
|
906 |
+
|
907 |
+
w = attn.sum(2)
|
908 |
+
|
909 |
+
l_length_sdp = self.sdp(x, x_mask, w, g=g)
|
910 |
+
l_length_sdp = l_length_sdp / torch.sum(x_mask)
|
911 |
+
|
912 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
913 |
+
logw = self.dp(x, x_mask, g=g)
|
914 |
+
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
915 |
+
x_mask
|
916 |
+
) # for averaging
|
917 |
+
|
918 |
+
l_length = l_length_dp + l_length_sdp
|
919 |
+
|
920 |
+
# expand prior
|
921 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
922 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
923 |
+
|
924 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
925 |
+
z, y_lengths, self.segment_size
|
926 |
+
)
|
927 |
+
o = self.dec(z_slice, g=g)
|
928 |
+
return (
|
929 |
+
o,
|
930 |
+
l_length,
|
931 |
+
attn,
|
932 |
+
ids_slice,
|
933 |
+
x_mask,
|
934 |
+
y_mask,
|
935 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
936 |
+
(x, logw, logw_),
|
937 |
+
)
|
938 |
+
|
939 |
+
def infer(
|
940 |
+
self,
|
941 |
+
x,
|
942 |
+
x_lengths,
|
943 |
+
sid,
|
944 |
+
tone,
|
945 |
+
language,
|
946 |
+
bert,
|
947 |
+
ja_bert,
|
948 |
+
noise_scale=0.667,
|
949 |
+
length_scale=1,
|
950 |
+
noise_scale_w=0.8,
|
951 |
+
max_len=None,
|
952 |
+
sdp_ratio=0,
|
953 |
+
y=None,
|
954 |
+
):
|
955 |
+
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
|
956 |
+
# g = self.gst(y)
|
957 |
+
if self.n_speakers > 0:
|
958 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
959 |
+
else:
|
960 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
961 |
+
x, m_p, logs_p, x_mask = self.enc_p(
|
962 |
+
x, x_lengths, tone, language, bert, ja_bert, g=g
|
963 |
+
)
|
964 |
+
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
|
965 |
+
sdp_ratio
|
966 |
+
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
967 |
+
w = torch.exp(logw) * x_mask * length_scale
|
968 |
+
w_ceil = torch.ceil(w)
|
969 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
970 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
971 |
+
x_mask.dtype
|
972 |
+
)
|
973 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
974 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
975 |
+
|
976 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
977 |
+
1, 2
|
978 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
979 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
980 |
+
1, 2
|
981 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
982 |
+
|
983 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
984 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
985 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
986 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
modules.py
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from torch.nn import Conv1d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from commons import init_weights, get_padding
|
11 |
+
from transforms import piecewise_rational_quadratic_transform
|
12 |
+
from attentions import Encoder
|
13 |
+
|
14 |
+
LRELU_SLOPE = 0.1
|
15 |
+
|
16 |
+
|
17 |
+
class LayerNorm(nn.Module):
|
18 |
+
def __init__(self, channels, eps=1e-5):
|
19 |
+
super().__init__()
|
20 |
+
self.channels = channels
|
21 |
+
self.eps = eps
|
22 |
+
|
23 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
24 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = x.transpose(1, -1)
|
28 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
29 |
+
return x.transpose(1, -1)
|
30 |
+
|
31 |
+
|
32 |
+
class ConvReluNorm(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
in_channels,
|
36 |
+
hidden_channels,
|
37 |
+
out_channels,
|
38 |
+
kernel_size,
|
39 |
+
n_layers,
|
40 |
+
p_dropout,
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
self.in_channels = in_channels
|
44 |
+
self.hidden_channels = hidden_channels
|
45 |
+
self.out_channels = out_channels
|
46 |
+
self.kernel_size = kernel_size
|
47 |
+
self.n_layers = n_layers
|
48 |
+
self.p_dropout = p_dropout
|
49 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
50 |
+
|
51 |
+
self.conv_layers = nn.ModuleList()
|
52 |
+
self.norm_layers = nn.ModuleList()
|
53 |
+
self.conv_layers.append(
|
54 |
+
nn.Conv1d(
|
55 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
56 |
+
)
|
57 |
+
)
|
58 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
59 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
60 |
+
for _ in range(n_layers - 1):
|
61 |
+
self.conv_layers.append(
|
62 |
+
nn.Conv1d(
|
63 |
+
hidden_channels,
|
64 |
+
hidden_channels,
|
65 |
+
kernel_size,
|
66 |
+
padding=kernel_size // 2,
|
67 |
+
)
|
68 |
+
)
|
69 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
70 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
71 |
+
self.proj.weight.data.zero_()
|
72 |
+
self.proj.bias.data.zero_()
|
73 |
+
|
74 |
+
def forward(self, x, x_mask):
|
75 |
+
x_org = x
|
76 |
+
for i in range(self.n_layers):
|
77 |
+
x = self.conv_layers[i](x * x_mask)
|
78 |
+
x = self.norm_layers[i](x)
|
79 |
+
x = self.relu_drop(x)
|
80 |
+
x = x_org + self.proj(x)
|
81 |
+
return x * x_mask
|
82 |
+
|
83 |
+
|
84 |
+
class DDSConv(nn.Module):
|
85 |
+
"""
|
86 |
+
Dialted and Depth-Separable Convolution
|
87 |
+
"""
|
88 |
+
|
89 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
90 |
+
super().__init__()
|
91 |
+
self.channels = channels
|
92 |
+
self.kernel_size = kernel_size
|
93 |
+
self.n_layers = n_layers
|
94 |
+
self.p_dropout = p_dropout
|
95 |
+
|
96 |
+
self.drop = nn.Dropout(p_dropout)
|
97 |
+
self.convs_sep = nn.ModuleList()
|
98 |
+
self.convs_1x1 = nn.ModuleList()
|
99 |
+
self.norms_1 = nn.ModuleList()
|
100 |
+
self.norms_2 = nn.ModuleList()
|
101 |
+
for i in range(n_layers):
|
102 |
+
dilation = kernel_size**i
|
103 |
+
padding = (kernel_size * dilation - dilation) // 2
|
104 |
+
self.convs_sep.append(
|
105 |
+
nn.Conv1d(
|
106 |
+
channels,
|
107 |
+
channels,
|
108 |
+
kernel_size,
|
109 |
+
groups=channels,
|
110 |
+
dilation=dilation,
|
111 |
+
padding=padding,
|
112 |
+
)
|
113 |
+
)
|
114 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
115 |
+
self.norms_1.append(LayerNorm(channels))
|
116 |
+
self.norms_2.append(LayerNorm(channels))
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, g=None):
|
119 |
+
if g is not None:
|
120 |
+
x = x + g
|
121 |
+
for i in range(self.n_layers):
|
122 |
+
y = self.convs_sep[i](x * x_mask)
|
123 |
+
y = self.norms_1[i](y)
|
124 |
+
y = F.gelu(y)
|
125 |
+
y = self.convs_1x1[i](y)
|
126 |
+
y = self.norms_2[i](y)
|
127 |
+
y = F.gelu(y)
|
128 |
+
y = self.drop(y)
|
129 |
+
x = x + y
|
130 |
+
return x * x_mask
|
131 |
+
|
132 |
+
|
133 |
+
class WN(torch.nn.Module):
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
hidden_channels,
|
137 |
+
kernel_size,
|
138 |
+
dilation_rate,
|
139 |
+
n_layers,
|
140 |
+
gin_channels=0,
|
141 |
+
p_dropout=0,
|
142 |
+
):
|
143 |
+
super(WN, self).__init__()
|
144 |
+
assert kernel_size % 2 == 1
|
145 |
+
self.hidden_channels = hidden_channels
|
146 |
+
self.kernel_size = (kernel_size,)
|
147 |
+
self.dilation_rate = dilation_rate
|
148 |
+
self.n_layers = n_layers
|
149 |
+
self.gin_channels = gin_channels
|
150 |
+
self.p_dropout = p_dropout
|
151 |
+
|
152 |
+
self.in_layers = torch.nn.ModuleList()
|
153 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
154 |
+
self.drop = nn.Dropout(p_dropout)
|
155 |
+
|
156 |
+
if gin_channels != 0:
|
157 |
+
cond_layer = torch.nn.Conv1d(
|
158 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
159 |
+
)
|
160 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
161 |
+
|
162 |
+
for i in range(n_layers):
|
163 |
+
dilation = dilation_rate**i
|
164 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
165 |
+
in_layer = torch.nn.Conv1d(
|
166 |
+
hidden_channels,
|
167 |
+
2 * hidden_channels,
|
168 |
+
kernel_size,
|
169 |
+
dilation=dilation,
|
170 |
+
padding=padding,
|
171 |
+
)
|
172 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
173 |
+
self.in_layers.append(in_layer)
|
174 |
+
|
175 |
+
# last one is not necessary
|
176 |
+
if i < n_layers - 1:
|
177 |
+
res_skip_channels = 2 * hidden_channels
|
178 |
+
else:
|
179 |
+
res_skip_channels = hidden_channels
|
180 |
+
|
181 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
182 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
183 |
+
self.res_skip_layers.append(res_skip_layer)
|
184 |
+
|
185 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
186 |
+
output = torch.zeros_like(x)
|
187 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
188 |
+
|
189 |
+
if g is not None:
|
190 |
+
g = self.cond_layer(g)
|
191 |
+
|
192 |
+
for i in range(self.n_layers):
|
193 |
+
x_in = self.in_layers[i](x)
|
194 |
+
if g is not None:
|
195 |
+
cond_offset = i * 2 * self.hidden_channels
|
196 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
197 |
+
else:
|
198 |
+
g_l = torch.zeros_like(x_in)
|
199 |
+
|
200 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
201 |
+
acts = self.drop(acts)
|
202 |
+
|
203 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
204 |
+
if i < self.n_layers - 1:
|
205 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
206 |
+
x = (x + res_acts) * x_mask
|
207 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
208 |
+
else:
|
209 |
+
output = output + res_skip_acts
|
210 |
+
return output * x_mask
|
211 |
+
|
212 |
+
def remove_weight_norm(self):
|
213 |
+
if self.gin_channels != 0:
|
214 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
215 |
+
for l in self.in_layers:
|
216 |
+
torch.nn.utils.remove_weight_norm(l)
|
217 |
+
for l in self.res_skip_layers:
|
218 |
+
torch.nn.utils.remove_weight_norm(l)
|
219 |
+
|
220 |
+
|
221 |
+
class ResBlock1(torch.nn.Module):
|
222 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
223 |
+
super(ResBlock1, self).__init__()
|
224 |
+
self.convs1 = nn.ModuleList(
|
225 |
+
[
|
226 |
+
weight_norm(
|
227 |
+
Conv1d(
|
228 |
+
channels,
|
229 |
+
channels,
|
230 |
+
kernel_size,
|
231 |
+
1,
|
232 |
+
dilation=dilation[0],
|
233 |
+
padding=get_padding(kernel_size, dilation[0]),
|
234 |
+
)
|
235 |
+
),
|
236 |
+
weight_norm(
|
237 |
+
Conv1d(
|
238 |
+
channels,
|
239 |
+
channels,
|
240 |
+
kernel_size,
|
241 |
+
1,
|
242 |
+
dilation=dilation[1],
|
243 |
+
padding=get_padding(kernel_size, dilation[1]),
|
244 |
+
)
|
245 |
+
),
|
246 |
+
weight_norm(
|
247 |
+
Conv1d(
|
248 |
+
channels,
|
249 |
+
channels,
|
250 |
+
kernel_size,
|
251 |
+
1,
|
252 |
+
dilation=dilation[2],
|
253 |
+
padding=get_padding(kernel_size, dilation[2]),
|
254 |
+
)
|
255 |
+
),
|
256 |
+
]
|
257 |
+
)
|
258 |
+
self.convs1.apply(init_weights)
|
259 |
+
|
260 |
+
self.convs2 = nn.ModuleList(
|
261 |
+
[
|
262 |
+
weight_norm(
|
263 |
+
Conv1d(
|
264 |
+
channels,
|
265 |
+
channels,
|
266 |
+
kernel_size,
|
267 |
+
1,
|
268 |
+
dilation=1,
|
269 |
+
padding=get_padding(kernel_size, 1),
|
270 |
+
)
|
271 |
+
),
|
272 |
+
weight_norm(
|
273 |
+
Conv1d(
|
274 |
+
channels,
|
275 |
+
channels,
|
276 |
+
kernel_size,
|
277 |
+
1,
|
278 |
+
dilation=1,
|
279 |
+
padding=get_padding(kernel_size, 1),
|
280 |
+
)
|
281 |
+
),
|
282 |
+
weight_norm(
|
283 |
+
Conv1d(
|
284 |
+
channels,
|
285 |
+
channels,
|
286 |
+
kernel_size,
|
287 |
+
1,
|
288 |
+
dilation=1,
|
289 |
+
padding=get_padding(kernel_size, 1),
|
290 |
+
)
|
291 |
+
),
|
292 |
+
]
|
293 |
+
)
|
294 |
+
self.convs2.apply(init_weights)
|
295 |
+
|
296 |
+
def forward(self, x, x_mask=None):
|
297 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
298 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
299 |
+
if x_mask is not None:
|
300 |
+
xt = xt * x_mask
|
301 |
+
xt = c1(xt)
|
302 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
303 |
+
if x_mask is not None:
|
304 |
+
xt = xt * x_mask
|
305 |
+
xt = c2(xt)
|
306 |
+
x = xt + x
|
307 |
+
if x_mask is not None:
|
308 |
+
x = x * x_mask
|
309 |
+
return x
|
310 |
+
|
311 |
+
def remove_weight_norm(self):
|
312 |
+
for l in self.convs1:
|
313 |
+
remove_weight_norm(l)
|
314 |
+
for l in self.convs2:
|
315 |
+
remove_weight_norm(l)
|
316 |
+
|
317 |
+
|
318 |
+
class ResBlock2(torch.nn.Module):
|
319 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
320 |
+
super(ResBlock2, self).__init__()
|
321 |
+
self.convs = nn.ModuleList(
|
322 |
+
[
|
323 |
+
weight_norm(
|
324 |
+
Conv1d(
|
325 |
+
channels,
|
326 |
+
channels,
|
327 |
+
kernel_size,
|
328 |
+
1,
|
329 |
+
dilation=dilation[0],
|
330 |
+
padding=get_padding(kernel_size, dilation[0]),
|
331 |
+
)
|
332 |
+
),
|
333 |
+
weight_norm(
|
334 |
+
Conv1d(
|
335 |
+
channels,
|
336 |
+
channels,
|
337 |
+
kernel_size,
|
338 |
+
1,
|
339 |
+
dilation=dilation[1],
|
340 |
+
padding=get_padding(kernel_size, dilation[1]),
|
341 |
+
)
|
342 |
+
),
|
343 |
+
]
|
344 |
+
)
|
345 |
+
self.convs.apply(init_weights)
|
346 |
+
|
347 |
+
def forward(self, x, x_mask=None):
|
348 |
+
for c in self.convs:
|
349 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
350 |
+
if x_mask is not None:
|
351 |
+
xt = xt * x_mask
|
352 |
+
xt = c(xt)
|
353 |
+
x = xt + x
|
354 |
+
if x_mask is not None:
|
355 |
+
x = x * x_mask
|
356 |
+
return x
|
357 |
+
|
358 |
+
def remove_weight_norm(self):
|
359 |
+
for l in self.convs:
|
360 |
+
remove_weight_norm(l)
|
361 |
+
|
362 |
+
|
363 |
+
class Log(nn.Module):
|
364 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
365 |
+
if not reverse:
|
366 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
367 |
+
logdet = torch.sum(-y, [1, 2])
|
368 |
+
return y, logdet
|
369 |
+
else:
|
370 |
+
x = torch.exp(x) * x_mask
|
371 |
+
return x
|
372 |
+
|
373 |
+
|
374 |
+
class Flip(nn.Module):
|
375 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
376 |
+
x = torch.flip(x, [1])
|
377 |
+
if not reverse:
|
378 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
379 |
+
return x, logdet
|
380 |
+
else:
|
381 |
+
return x
|
382 |
+
|
383 |
+
|
384 |
+
class ElementwiseAffine(nn.Module):
|
385 |
+
def __init__(self, channels):
|
386 |
+
super().__init__()
|
387 |
+
self.channels = channels
|
388 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
389 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
390 |
+
|
391 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
392 |
+
if not reverse:
|
393 |
+
y = self.m + torch.exp(self.logs) * x
|
394 |
+
y = y * x_mask
|
395 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
396 |
+
return y, logdet
|
397 |
+
else:
|
398 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
399 |
+
return x
|
400 |
+
|
401 |
+
|
402 |
+
class ResidualCouplingLayer(nn.Module):
|
403 |
+
def __init__(
|
404 |
+
self,
|
405 |
+
channels,
|
406 |
+
hidden_channels,
|
407 |
+
kernel_size,
|
408 |
+
dilation_rate,
|
409 |
+
n_layers,
|
410 |
+
p_dropout=0,
|
411 |
+
gin_channels=0,
|
412 |
+
mean_only=False,
|
413 |
+
):
|
414 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
415 |
+
super().__init__()
|
416 |
+
self.channels = channels
|
417 |
+
self.hidden_channels = hidden_channels
|
418 |
+
self.kernel_size = kernel_size
|
419 |
+
self.dilation_rate = dilation_rate
|
420 |
+
self.n_layers = n_layers
|
421 |
+
self.half_channels = channels // 2
|
422 |
+
self.mean_only = mean_only
|
423 |
+
|
424 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
425 |
+
self.enc = WN(
|
426 |
+
hidden_channels,
|
427 |
+
kernel_size,
|
428 |
+
dilation_rate,
|
429 |
+
n_layers,
|
430 |
+
p_dropout=p_dropout,
|
431 |
+
gin_channels=gin_channels,
|
432 |
+
)
|
433 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
434 |
+
self.post.weight.data.zero_()
|
435 |
+
self.post.bias.data.zero_()
|
436 |
+
|
437 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
438 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
439 |
+
h = self.pre(x0) * x_mask
|
440 |
+
h = self.enc(h, x_mask, g=g)
|
441 |
+
stats = self.post(h) * x_mask
|
442 |
+
if not self.mean_only:
|
443 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
444 |
+
else:
|
445 |
+
m = stats
|
446 |
+
logs = torch.zeros_like(m)
|
447 |
+
|
448 |
+
if not reverse:
|
449 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
450 |
+
x = torch.cat([x0, x1], 1)
|
451 |
+
logdet = torch.sum(logs, [1, 2])
|
452 |
+
return x, logdet
|
453 |
+
else:
|
454 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
455 |
+
x = torch.cat([x0, x1], 1)
|
456 |
+
return x
|
457 |
+
|
458 |
+
|
459 |
+
class ConvFlow(nn.Module):
|
460 |
+
def __init__(
|
461 |
+
self,
|
462 |
+
in_channels,
|
463 |
+
filter_channels,
|
464 |
+
kernel_size,
|
465 |
+
n_layers,
|
466 |
+
num_bins=10,
|
467 |
+
tail_bound=5.0,
|
468 |
+
):
|
469 |
+
super().__init__()
|
470 |
+
self.in_channels = in_channels
|
471 |
+
self.filter_channels = filter_channels
|
472 |
+
self.kernel_size = kernel_size
|
473 |
+
self.n_layers = n_layers
|
474 |
+
self.num_bins = num_bins
|
475 |
+
self.tail_bound = tail_bound
|
476 |
+
self.half_channels = in_channels // 2
|
477 |
+
|
478 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
479 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
480 |
+
self.proj = nn.Conv1d(
|
481 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
482 |
+
)
|
483 |
+
self.proj.weight.data.zero_()
|
484 |
+
self.proj.bias.data.zero_()
|
485 |
+
|
486 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
487 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
488 |
+
h = self.pre(x0)
|
489 |
+
h = self.convs(h, x_mask, g=g)
|
490 |
+
h = self.proj(h) * x_mask
|
491 |
+
|
492 |
+
b, c, t = x0.shape
|
493 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
494 |
+
|
495 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
496 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
497 |
+
self.filter_channels
|
498 |
+
)
|
499 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
500 |
+
|
501 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
502 |
+
x1,
|
503 |
+
unnormalized_widths,
|
504 |
+
unnormalized_heights,
|
505 |
+
unnormalized_derivatives,
|
506 |
+
inverse=reverse,
|
507 |
+
tails="linear",
|
508 |
+
tail_bound=self.tail_bound,
|
509 |
+
)
|
510 |
+
|
511 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
512 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
513 |
+
if not reverse:
|
514 |
+
return x, logdet
|
515 |
+
else:
|
516 |
+
return x
|
517 |
+
|
518 |
+
|
519 |
+
class TransformerCouplingLayer(nn.Module):
|
520 |
+
def __init__(
|
521 |
+
self,
|
522 |
+
channels,
|
523 |
+
hidden_channels,
|
524 |
+
kernel_size,
|
525 |
+
n_layers,
|
526 |
+
n_heads,
|
527 |
+
p_dropout=0,
|
528 |
+
filter_channels=0,
|
529 |
+
mean_only=False,
|
530 |
+
wn_sharing_parameter=None,
|
531 |
+
gin_channels=0,
|
532 |
+
):
|
533 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
534 |
+
super().__init__()
|
535 |
+
self.channels = channels
|
536 |
+
self.hidden_channels = hidden_channels
|
537 |
+
self.kernel_size = kernel_size
|
538 |
+
self.n_layers = n_layers
|
539 |
+
self.half_channels = channels // 2
|
540 |
+
self.mean_only = mean_only
|
541 |
+
|
542 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
543 |
+
self.enc = (
|
544 |
+
Encoder(
|
545 |
+
hidden_channels,
|
546 |
+
filter_channels,
|
547 |
+
n_heads,
|
548 |
+
n_layers,
|
549 |
+
kernel_size,
|
550 |
+
p_dropout,
|
551 |
+
isflow=True,
|
552 |
+
gin_channels=gin_channels,
|
553 |
+
)
|
554 |
+
if wn_sharing_parameter is None
|
555 |
+
else wn_sharing_parameter
|
556 |
+
)
|
557 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
558 |
+
self.post.weight.data.zero_()
|
559 |
+
self.post.bias.data.zero_()
|
560 |
+
|
561 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
562 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
563 |
+
h = self.pre(x0) * x_mask
|
564 |
+
h = self.enc(h, x_mask, g=g)
|
565 |
+
stats = self.post(h) * x_mask
|
566 |
+
if not self.mean_only:
|
567 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
568 |
+
else:
|
569 |
+
m = stats
|
570 |
+
logs = torch.zeros_like(m)
|
571 |
+
|
572 |
+
if not reverse:
|
573 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
574 |
+
x = torch.cat([x0, x1], 1)
|
575 |
+
logdet = torch.sum(logs, [1, 2])
|
576 |
+
return x, logdet
|
577 |
+
else:
|
578 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
579 |
+
x = torch.cat([x0, x1], 1)
|
580 |
+
return x
|
581 |
+
|
582 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
583 |
+
x1,
|
584 |
+
unnormalized_widths,
|
585 |
+
unnormalized_heights,
|
586 |
+
unnormalized_derivatives,
|
587 |
+
inverse=reverse,
|
588 |
+
tails="linear",
|
589 |
+
tail_bound=self.tail_bound,
|
590 |
+
)
|
591 |
+
|
592 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
593 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
594 |
+
if not reverse:
|
595 |
+
return x, logdet
|
596 |
+
else:
|
597 |
+
return x
|
monotonic_align/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import zeros, int32, float32
|
2 |
+
from torch import from_numpy
|
3 |
+
|
4 |
+
from .core import maximum_path_jit
|
5 |
+
|
6 |
+
|
7 |
+
def maximum_path(neg_cent, mask):
|
8 |
+
device = neg_cent.device
|
9 |
+
dtype = neg_cent.dtype
|
10 |
+
neg_cent = neg_cent.data.cpu().numpy().astype(float32)
|
11 |
+
path = zeros(neg_cent.shape, dtype=int32)
|
12 |
+
|
13 |
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
|
14 |
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
|
15 |
+
maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
|
16 |
+
return from_numpy(path).to(device=device, dtype=dtype)
|
monotonic_align/core.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numba
|
2 |
+
|
3 |
+
|
4 |
+
@numba.jit(
|
5 |
+
numba.void(
|
6 |
+
numba.int32[:, :, ::1],
|
7 |
+
numba.float32[:, :, ::1],
|
8 |
+
numba.int32[::1],
|
9 |
+
numba.int32[::1],
|
10 |
+
),
|
11 |
+
nopython=True,
|
12 |
+
nogil=True,
|
13 |
+
)
|
14 |
+
def maximum_path_jit(paths, values, t_ys, t_xs):
|
15 |
+
b = paths.shape[0]
|
16 |
+
max_neg_val = -1e9
|
17 |
+
for i in range(int(b)):
|
18 |
+
path = paths[i]
|
19 |
+
value = values[i]
|
20 |
+
t_y = t_ys[i]
|
21 |
+
t_x = t_xs[i]
|
22 |
+
|
23 |
+
v_prev = v_cur = 0.0
|
24 |
+
index = t_x - 1
|
25 |
+
|
26 |
+
for y in range(t_y):
|
27 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
28 |
+
if x == y:
|
29 |
+
v_cur = max_neg_val
|
30 |
+
else:
|
31 |
+
v_cur = value[y - 1, x]
|
32 |
+
if x == 0:
|
33 |
+
if y == 0:
|
34 |
+
v_prev = 0.0
|
35 |
+
else:
|
36 |
+
v_prev = max_neg_val
|
37 |
+
else:
|
38 |
+
v_prev = value[y - 1, x - 1]
|
39 |
+
value[y, x] += max(v_prev, v_cur)
|
40 |
+
|
41 |
+
for y in range(t_y - 1, -1, -1):
|
42 |
+
path[y, index] = 1
|
43 |
+
if index != 0 and (
|
44 |
+
index == y or value[y - 1, index] < value[y - 1, index - 1]
|
45 |
+
):
|
46 |
+
index = index - 1
|
preprocess_text.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from collections import defaultdict
|
3 |
+
from random import shuffle
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
from tqdm import tqdm
|
7 |
+
import click
|
8 |
+
from text.cleaner import clean_text
|
9 |
+
|
10 |
+
|
11 |
+
@click.command()
|
12 |
+
@click.option(
|
13 |
+
"--transcription-path",
|
14 |
+
default="filelists/hanser.list",
|
15 |
+
type=click.Path(exists=True, file_okay=True, dir_okay=False),
|
16 |
+
)
|
17 |
+
@click.option("--cleaned-path", default=None)
|
18 |
+
@click.option("--train-path", default="filelists/train.list")
|
19 |
+
@click.option("--val-path", default="filelists/val.list")
|
20 |
+
@click.option(
|
21 |
+
"--config-path",
|
22 |
+
default="configs/config.json",
|
23 |
+
type=click.Path(exists=True, file_okay=True, dir_okay=False),
|
24 |
+
)
|
25 |
+
@click.option("--val-per-spk", default=4)
|
26 |
+
@click.option("--max-val-total", default=8)
|
27 |
+
@click.option("--clean/--no-clean", default=True)
|
28 |
+
def main(
|
29 |
+
transcription_path: str,
|
30 |
+
cleaned_path: Optional[str],
|
31 |
+
train_path: str,
|
32 |
+
val_path: str,
|
33 |
+
config_path: str,
|
34 |
+
val_per_spk: int,
|
35 |
+
max_val_total: int,
|
36 |
+
clean: bool,
|
37 |
+
):
|
38 |
+
if cleaned_path is None:
|
39 |
+
cleaned_path = transcription_path + ".cleaned"
|
40 |
+
|
41 |
+
if clean:
|
42 |
+
out_file = open(cleaned_path, "w", encoding="utf-8")
|
43 |
+
for line in tqdm(open(transcription_path, encoding="utf-8").readlines()):
|
44 |
+
try:
|
45 |
+
utt, spk, language, text = line.strip().split("|")
|
46 |
+
norm_text, phones, tones, word2ph = clean_text(text, language)
|
47 |
+
out_file.write(
|
48 |
+
"{}|{}|{}|{}|{}|{}|{}\n".format(
|
49 |
+
utt,
|
50 |
+
spk,
|
51 |
+
language,
|
52 |
+
norm_text,
|
53 |
+
" ".join(phones),
|
54 |
+
" ".join([str(i) for i in tones]),
|
55 |
+
" ".join([str(i) for i in word2ph]),
|
56 |
+
)
|
57 |
+
)
|
58 |
+
except Exception as error:
|
59 |
+
print("err!", line, error)
|
60 |
+
|
61 |
+
out_file.close()
|
62 |
+
|
63 |
+
transcription_path = cleaned_path
|
64 |
+
|
65 |
+
spk_utt_map = defaultdict(list)
|
66 |
+
spk_id_map = {}
|
67 |
+
current_sid = 0
|
68 |
+
|
69 |
+
with open(transcription_path, encoding="utf-8") as f:
|
70 |
+
for line in f.readlines():
|
71 |
+
utt, spk, language, text, phones, tones, word2ph = line.strip().split("|")
|
72 |
+
spk_utt_map[spk].append(line)
|
73 |
+
|
74 |
+
if spk not in spk_id_map.keys():
|
75 |
+
spk_id_map[spk] = current_sid
|
76 |
+
current_sid += 1
|
77 |
+
|
78 |
+
train_list = []
|
79 |
+
val_list = []
|
80 |
+
|
81 |
+
for spk, utts in spk_utt_map.items():
|
82 |
+
shuffle(utts)
|
83 |
+
val_list += utts[:val_per_spk]
|
84 |
+
train_list += utts[val_per_spk:]
|
85 |
+
|
86 |
+
if len(val_list) > max_val_total:
|
87 |
+
train_list += val_list[max_val_total:]
|
88 |
+
val_list = val_list[:max_val_total]
|
89 |
+
|
90 |
+
with open(train_path, "w", encoding="utf-8") as f:
|
91 |
+
for line in train_list:
|
92 |
+
f.write(line)
|
93 |
+
|
94 |
+
with open(val_path, "w", encoding="utf-8") as f:
|
95 |
+
for line in val_list:
|
96 |
+
f.write(line)
|
97 |
+
|
98 |
+
config = json.load(open(config_path, encoding="utf-8"))
|
99 |
+
config["data"]["spk2id"] = spk_id_map
|
100 |
+
with open(config_path, "w", encoding="utf-8") as f:
|
101 |
+
json.dump(config, f, indent=2, ensure_ascii=False)
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
librosa==0.9.1
|
2 |
+
matplotlib
|
3 |
+
numpy
|
4 |
+
numba
|
5 |
+
phonemizer
|
6 |
+
scipy
|
7 |
+
tensorboard
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
Unidecode
|
11 |
+
amfm_decompy
|
12 |
+
jieba
|
13 |
+
transformers
|
14 |
+
pypinyin
|
15 |
+
cn2an
|
16 |
+
gradio
|
17 |
+
av
|
18 |
+
mecab-python3
|
19 |
+
loguru
|
20 |
+
unidic-lite
|
21 |
+
cmudict
|
22 |
+
fugashi
|
23 |
+
num2words
|
resample.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import librosa
|
4 |
+
from multiprocessing import Pool, cpu_count
|
5 |
+
|
6 |
+
import soundfile
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
|
10 |
+
def process(item):
|
11 |
+
spkdir, wav_name, args = item
|
12 |
+
speaker = spkdir.replace("\\", "/").split("/")[-1]
|
13 |
+
wav_path = os.path.join(args.in_dir, speaker, wav_name)
|
14 |
+
if os.path.exists(wav_path) and ".wav" in wav_path:
|
15 |
+
os.makedirs(os.path.join(args.out_dir, speaker), exist_ok=True)
|
16 |
+
wav, sr = librosa.load(wav_path, sr=args.sr)
|
17 |
+
soundfile.write(os.path.join(args.out_dir, speaker, wav_name), wav, sr)
|
18 |
+
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
parser = argparse.ArgumentParser()
|
22 |
+
parser.add_argument("--sr", type=int, default=44100, help="sampling rate")
|
23 |
+
parser.add_argument(
|
24 |
+
"--in_dir", type=str, default="./raw", help="path to source dir"
|
25 |
+
)
|
26 |
+
parser.add_argument(
|
27 |
+
"--out_dir", type=str, default="./dataset", help="path to target dir"
|
28 |
+
)
|
29 |
+
args = parser.parse_args()
|
30 |
+
# processes = 8
|
31 |
+
processes = cpu_count() - 2 if cpu_count() > 4 else 1
|
32 |
+
pool = Pool(processes=processes)
|
33 |
+
|
34 |
+
for speaker in os.listdir(args.in_dir):
|
35 |
+
spk_dir = os.path.join(args.in_dir, speaker)
|
36 |
+
if os.path.isdir(spk_dir):
|
37 |
+
print(spk_dir)
|
38 |
+
for _ in tqdm(
|
39 |
+
pool.imap_unordered(
|
40 |
+
process,
|
41 |
+
[
|
42 |
+
(spk_dir, i, args)
|
43 |
+
for i in os.listdir(spk_dir)
|
44 |
+
if i.endswith("wav")
|
45 |
+
],
|
46 |
+
)
|
47 |
+
):
|
48 |
+
pass
|
server.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, Response
|
2 |
+
from io import BytesIO
|
3 |
+
import torch
|
4 |
+
from av import open as avopen
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import utils
|
8 |
+
from models import SynthesizerTrn
|
9 |
+
from text.symbols import symbols
|
10 |
+
from text import cleaned_text_to_sequence, get_bert
|
11 |
+
from text.cleaner import clean_text
|
12 |
+
from scipy.io import wavfile
|
13 |
+
|
14 |
+
# Flask Init
|
15 |
+
app = Flask(__name__)
|
16 |
+
app.config["JSON_AS_ASCII"] = False
|
17 |
+
|
18 |
+
|
19 |
+
def get_text(text, language_str, hps):
|
20 |
+
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
21 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
22 |
+
|
23 |
+
if hps.data.add_blank:
|
24 |
+
phone = commons.intersperse(phone, 0)
|
25 |
+
tone = commons.intersperse(tone, 0)
|
26 |
+
language = commons.intersperse(language, 0)
|
27 |
+
for i in range(len(word2ph)):
|
28 |
+
word2ph[i] = word2ph[i] * 2
|
29 |
+
word2ph[0] += 1
|
30 |
+
bert = get_bert(norm_text, word2ph, language_str)
|
31 |
+
del word2ph
|
32 |
+
assert bert.shape[-1] == len(phone), phone
|
33 |
+
|
34 |
+
if language_str == "ZH":
|
35 |
+
bert = bert
|
36 |
+
ja_bert = torch.zeros(768, len(phone))
|
37 |
+
elif language_str == "JA":
|
38 |
+
ja_bert = bert
|
39 |
+
bert = torch.zeros(1024, len(phone))
|
40 |
+
else:
|
41 |
+
bert = torch.zeros(1024, len(phone))
|
42 |
+
ja_bert = torch.zeros(768, len(phone))
|
43 |
+
assert bert.shape[-1] == len(
|
44 |
+
phone
|
45 |
+
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
46 |
+
phone = torch.LongTensor(phone)
|
47 |
+
tone = torch.LongTensor(tone)
|
48 |
+
language = torch.LongTensor(language)
|
49 |
+
return bert, ja_bert, phone, tone, language
|
50 |
+
|
51 |
+
|
52 |
+
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
|
53 |
+
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
|
54 |
+
with torch.no_grad():
|
55 |
+
x_tst = phones.to(dev).unsqueeze(0)
|
56 |
+
tones = tones.to(dev).unsqueeze(0)
|
57 |
+
lang_ids = lang_ids.to(dev).unsqueeze(0)
|
58 |
+
bert = bert.to(dev).unsqueeze(0)
|
59 |
+
ja_bert = ja_bert.to(device).unsqueeze(0)
|
60 |
+
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(dev)
|
61 |
+
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(dev)
|
62 |
+
audio = (
|
63 |
+
net_g.infer(
|
64 |
+
x_tst,
|
65 |
+
x_tst_lengths,
|
66 |
+
speakers,
|
67 |
+
tones,
|
68 |
+
lang_ids,
|
69 |
+
bert,
|
70 |
+
ja_bert,
|
71 |
+
sdp_ratio=sdp_ratio,
|
72 |
+
noise_scale=noise_scale,
|
73 |
+
noise_scale_w=noise_scale_w,
|
74 |
+
length_scale=length_scale,
|
75 |
+
)[0][0, 0]
|
76 |
+
.data.cpu()
|
77 |
+
.float()
|
78 |
+
.numpy()
|
79 |
+
)
|
80 |
+
return audio
|
81 |
+
|
82 |
+
|
83 |
+
def replace_punctuation(text, i=2):
|
84 |
+
punctuation = ",。?!"
|
85 |
+
for char in punctuation:
|
86 |
+
text = text.replace(char, char * i)
|
87 |
+
return text
|
88 |
+
|
89 |
+
|
90 |
+
def wav2(i, o, format):
|
91 |
+
inp = avopen(i, "rb")
|
92 |
+
out = avopen(o, "wb", format=format)
|
93 |
+
if format == "ogg":
|
94 |
+
format = "libvorbis"
|
95 |
+
|
96 |
+
ostream = out.add_stream(format)
|
97 |
+
|
98 |
+
for frame in inp.decode(audio=0):
|
99 |
+
for p in ostream.encode(frame):
|
100 |
+
out.mux(p)
|
101 |
+
|
102 |
+
for p in ostream.encode(None):
|
103 |
+
out.mux(p)
|
104 |
+
|
105 |
+
out.close()
|
106 |
+
inp.close()
|
107 |
+
|
108 |
+
|
109 |
+
# Load Generator
|
110 |
+
hps = utils.get_hparams_from_file("./configs/config.json")
|
111 |
+
|
112 |
+
dev = "cuda"
|
113 |
+
net_g = SynthesizerTrn(
|
114 |
+
len(symbols),
|
115 |
+
hps.data.filter_length // 2 + 1,
|
116 |
+
hps.train.segment_size // hps.data.hop_length,
|
117 |
+
n_speakers=hps.data.n_speakers,
|
118 |
+
**hps.model,
|
119 |
+
).to(dev)
|
120 |
+
_ = net_g.eval()
|
121 |
+
|
122 |
+
_ = utils.load_checkpoint("logs/G_649000.pth", net_g, None, skip_optimizer=True)
|
123 |
+
|
124 |
+
|
125 |
+
@app.route("/")
|
126 |
+
def main():
|
127 |
+
try:
|
128 |
+
speaker = request.args.get("speaker")
|
129 |
+
text = request.args.get("text").replace("/n", "")
|
130 |
+
sdp_ratio = float(request.args.get("sdp_ratio", 0.2))
|
131 |
+
noise = float(request.args.get("noise", 0.5))
|
132 |
+
noisew = float(request.args.get("noisew", 0.6))
|
133 |
+
length = float(request.args.get("length", 1.2))
|
134 |
+
language = request.args.get("language")
|
135 |
+
if length >= 2:
|
136 |
+
return "Too big length"
|
137 |
+
if len(text) >= 250:
|
138 |
+
return "Too long text"
|
139 |
+
fmt = request.args.get("format", "wav")
|
140 |
+
if None in (speaker, text):
|
141 |
+
return "Missing Parameter"
|
142 |
+
if fmt not in ("mp3", "wav", "ogg"):
|
143 |
+
return "Invalid Format"
|
144 |
+
if language not in ("JA", "ZH"):
|
145 |
+
return "Invalid language"
|
146 |
+
except:
|
147 |
+
return "Invalid Parameter"
|
148 |
+
|
149 |
+
with torch.no_grad():
|
150 |
+
audio = infer(
|
151 |
+
text,
|
152 |
+
sdp_ratio=sdp_ratio,
|
153 |
+
noise_scale=noise,
|
154 |
+
noise_scale_w=noisew,
|
155 |
+
length_scale=length,
|
156 |
+
sid=speaker,
|
157 |
+
language=language,
|
158 |
+
)
|
159 |
+
|
160 |
+
with BytesIO() as wav:
|
161 |
+
wavfile.write(wav, hps.data.sampling_rate, audio)
|
162 |
+
torch.cuda.empty_cache()
|
163 |
+
if fmt == "wav":
|
164 |
+
return Response(wav.getvalue(), mimetype="audio/wav")
|
165 |
+
wav.seek(0, 0)
|
166 |
+
with BytesIO() as ofp:
|
167 |
+
wav2(wav, ofp, fmt)
|
168 |
+
return Response(
|
169 |
+
ofp.getvalue(), mimetype="audio/mpeg" if fmt == "mp3" else "audio/ogg"
|
170 |
+
)
|
text/__init__.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from text.symbols import *
|
2 |
+
|
3 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
4 |
+
|
5 |
+
|
6 |
+
def cleaned_text_to_sequence(cleaned_text, tones, language):
|
7 |
+
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
8 |
+
Args:
|
9 |
+
text: string to convert to a sequence
|
10 |
+
Returns:
|
11 |
+
List of integers corresponding to the symbols in the text
|
12 |
+
"""
|
13 |
+
phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
14 |
+
tone_start = language_tone_start_map[language]
|
15 |
+
tones = [i + tone_start for i in tones]
|
16 |
+
lang_id = language_id_map[language]
|
17 |
+
lang_ids = [lang_id for i in phones]
|
18 |
+
return phones, tones, lang_ids
|
19 |
+
|
20 |
+
|
21 |
+
def get_bert(norm_text, word2ph, language, device):
|
22 |
+
from .chinese_bert import get_bert_feature as zh_bert
|
23 |
+
from .english_bert_mock import get_bert_feature as en_bert
|
24 |
+
from .japanese_bert import get_bert_feature as jp_bert
|
25 |
+
|
26 |
+
lang_bert_func_map = {"ZH": zh_bert, "EN": en_bert, "JP": jp_bert}
|
27 |
+
bert = lang_bert_func_map[language](norm_text, word2ph, device)
|
28 |
+
return bert
|
text/chinese.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
|
4 |
+
import cn2an
|
5 |
+
from pypinyin import lazy_pinyin, Style
|
6 |
+
|
7 |
+
from text.symbols import punctuation
|
8 |
+
from text.tone_sandhi import ToneSandhi
|
9 |
+
|
10 |
+
current_file_path = os.path.dirname(__file__)
|
11 |
+
pinyin_to_symbol_map = {
|
12 |
+
line.split("\t")[0]: line.strip().split("\t")[1]
|
13 |
+
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
14 |
+
}
|
15 |
+
|
16 |
+
import jieba.posseg as psg
|
17 |
+
|
18 |
+
|
19 |
+
rep_map = {
|
20 |
+
":": ",",
|
21 |
+
";": ",",
|
22 |
+
",": ",",
|
23 |
+
"。": ".",
|
24 |
+
"!": "!",
|
25 |
+
"?": "?",
|
26 |
+
"\n": ".",
|
27 |
+
"·": ",",
|
28 |
+
"、": ",",
|
29 |
+
"...": "…",
|
30 |
+
"$": ".",
|
31 |
+
"“": "'",
|
32 |
+
"”": "'",
|
33 |
+
"‘": "'",
|
34 |
+
"’": "'",
|
35 |
+
"(": "'",
|
36 |
+
")": "'",
|
37 |
+
"(": "'",
|
38 |
+
")": "'",
|
39 |
+
"《": "'",
|
40 |
+
"》": "'",
|
41 |
+
"【": "'",
|
42 |
+
"】": "'",
|
43 |
+
"[": "'",
|
44 |
+
"]": "'",
|
45 |
+
"—": "-",
|
46 |
+
"~": "-",
|
47 |
+
"~": "-",
|
48 |
+
"「": "'",
|
49 |
+
"」": "'",
|
50 |
+
}
|
51 |
+
|
52 |
+
tone_modifier = ToneSandhi()
|
53 |
+
|
54 |
+
|
55 |
+
def replace_punctuation(text):
|
56 |
+
text = text.replace("嗯", "恩").replace("呣", "母")
|
57 |
+
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
58 |
+
|
59 |
+
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
60 |
+
|
61 |
+
replaced_text = re.sub(
|
62 |
+
r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
|
63 |
+
)
|
64 |
+
|
65 |
+
return replaced_text
|
66 |
+
|
67 |
+
|
68 |
+
def g2p(text):
|
69 |
+
pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
|
70 |
+
sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
|
71 |
+
phones, tones, word2ph = _g2p(sentences)
|
72 |
+
assert sum(word2ph) == len(phones)
|
73 |
+
assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch.
|
74 |
+
phones = ["_"] + phones + ["_"]
|
75 |
+
tones = [0] + tones + [0]
|
76 |
+
word2ph = [1] + word2ph + [1]
|
77 |
+
return phones, tones, word2ph
|
78 |
+
|
79 |
+
|
80 |
+
def _get_initials_finals(word):
|
81 |
+
initials = []
|
82 |
+
finals = []
|
83 |
+
orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
|
84 |
+
orig_finals = lazy_pinyin(
|
85 |
+
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
|
86 |
+
)
|
87 |
+
for c, v in zip(orig_initials, orig_finals):
|
88 |
+
initials.append(c)
|
89 |
+
finals.append(v)
|
90 |
+
return initials, finals
|
91 |
+
|
92 |
+
|
93 |
+
def _g2p(segments):
|
94 |
+
phones_list = []
|
95 |
+
tones_list = []
|
96 |
+
word2ph = []
|
97 |
+
for seg in segments:
|
98 |
+
# Replace all English words in the sentence
|
99 |
+
seg = re.sub("[a-zA-Z]+", "", seg)
|
100 |
+
seg_cut = psg.lcut(seg)
|
101 |
+
initials = []
|
102 |
+
finals = []
|
103 |
+
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
|
104 |
+
for word, pos in seg_cut:
|
105 |
+
if pos == "eng":
|
106 |
+
continue
|
107 |
+
sub_initials, sub_finals = _get_initials_finals(word)
|
108 |
+
sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
|
109 |
+
initials.append(sub_initials)
|
110 |
+
finals.append(sub_finals)
|
111 |
+
|
112 |
+
# assert len(sub_initials) == len(sub_finals) == len(word)
|
113 |
+
initials = sum(initials, [])
|
114 |
+
finals = sum(finals, [])
|
115 |
+
#
|
116 |
+
for c, v in zip(initials, finals):
|
117 |
+
raw_pinyin = c + v
|
118 |
+
# NOTE: post process for pypinyin outputs
|
119 |
+
# we discriminate i, ii and iii
|
120 |
+
if c == v:
|
121 |
+
assert c in punctuation
|
122 |
+
phone = [c]
|
123 |
+
tone = "0"
|
124 |
+
word2ph.append(1)
|
125 |
+
else:
|
126 |
+
v_without_tone = v[:-1]
|
127 |
+
tone = v[-1]
|
128 |
+
|
129 |
+
pinyin = c + v_without_tone
|
130 |
+
assert tone in "12345"
|
131 |
+
|
132 |
+
if c:
|
133 |
+
# 多音节
|
134 |
+
v_rep_map = {
|
135 |
+
"uei": "ui",
|
136 |
+
"iou": "iu",
|
137 |
+
"uen": "un",
|
138 |
+
}
|
139 |
+
if v_without_tone in v_rep_map.keys():
|
140 |
+
pinyin = c + v_rep_map[v_without_tone]
|
141 |
+
else:
|
142 |
+
# 单音节
|
143 |
+
pinyin_rep_map = {
|
144 |
+
"ing": "ying",
|
145 |
+
"i": "yi",
|
146 |
+
"in": "yin",
|
147 |
+
"u": "wu",
|
148 |
+
}
|
149 |
+
if pinyin in pinyin_rep_map.keys():
|
150 |
+
pinyin = pinyin_rep_map[pinyin]
|
151 |
+
else:
|
152 |
+
single_rep_map = {
|
153 |
+
"v": "yu",
|
154 |
+
"e": "e",
|
155 |
+
"i": "y",
|
156 |
+
"u": "w",
|
157 |
+
}
|
158 |
+
if pinyin[0] in single_rep_map.keys():
|
159 |
+
pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
|
160 |
+
|
161 |
+
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
|
162 |
+
phone = pinyin_to_symbol_map[pinyin].split(" ")
|
163 |
+
word2ph.append(len(phone))
|
164 |
+
|
165 |
+
phones_list += phone
|
166 |
+
tones_list += [int(tone)] * len(phone)
|
167 |
+
return phones_list, tones_list, word2ph
|
168 |
+
|
169 |
+
|
170 |
+
def text_normalize(text):
|
171 |
+
numbers = re.findall(r"\d+(?:\.?\d+)?", text)
|
172 |
+
for number in numbers:
|
173 |
+
text = text.replace(number, cn2an.an2cn(number), 1)
|
174 |
+
text = replace_punctuation(text)
|
175 |
+
return text
|
176 |
+
|
177 |
+
|
178 |
+
def get_bert_feature(text, word2ph):
|
179 |
+
from text import chinese_bert
|
180 |
+
|
181 |
+
return chinese_bert.get_bert_feature(text, word2ph)
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
from text.chinese_bert import get_bert_feature
|
186 |
+
|
187 |
+
text = "啊!但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏"
|
188 |
+
text = text_normalize(text)
|
189 |
+
print(text)
|
190 |
+
phones, tones, word2ph = g2p(text)
|
191 |
+
bert = get_bert_feature(text, word2ph)
|
192 |
+
|
193 |
+
print(phones, tones, word2ph, bert.shape)
|
194 |
+
|
195 |
+
|
196 |
+
# # 示例用法
|
197 |
+
# text = "这是一个示例文本:,你好!这是一个测试...."
|
198 |
+
# print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
|
text/chinese_bert.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import sys
|
3 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/chinese-roberta-wwm-ext-large")
|
6 |
+
|
7 |
+
models = dict()
|
8 |
+
|
9 |
+
|
10 |
+
def get_bert_feature(text, word2ph, device=None):
|
11 |
+
if (
|
12 |
+
sys.platform == "darwin"
|
13 |
+
and torch.backends.mps.is_available()
|
14 |
+
and device == "cpu"
|
15 |
+
):
|
16 |
+
device = "mps"
|
17 |
+
if not device:
|
18 |
+
device = "cuda"
|
19 |
+
if device not in models.keys():
|
20 |
+
models[device] = AutoModelForMaskedLM.from_pretrained(
|
21 |
+
"./bert/chinese-roberta-wwm-ext-large"
|
22 |
+
).to(device)
|
23 |
+
with torch.no_grad():
|
24 |
+
inputs = tokenizer(text, return_tensors="pt")
|
25 |
+
for i in inputs:
|
26 |
+
inputs[i] = inputs[i].to(device)
|
27 |
+
res = models[device](**inputs, output_hidden_states=True)
|
28 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
29 |
+
|
30 |
+
assert len(word2ph) == len(text) + 2
|
31 |
+
word2phone = word2ph
|
32 |
+
phone_level_feature = []
|
33 |
+
for i in range(len(word2phone)):
|
34 |
+
repeat_feature = res[i].repeat(word2phone[i], 1)
|
35 |
+
phone_level_feature.append(repeat_feature)
|
36 |
+
|
37 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
38 |
+
|
39 |
+
return phone_level_feature.T
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
import torch
|
44 |
+
|
45 |
+
word_level_feature = torch.rand(38, 1024) # 12个词,每个词1024维特征
|
46 |
+
word2phone = [
|
47 |
+
1,
|
48 |
+
2,
|
49 |
+
1,
|
50 |
+
2,
|
51 |
+
2,
|
52 |
+
1,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
1,
|
56 |
+
2,
|
57 |
+
2,
|
58 |
+
1,
|
59 |
+
2,
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2,
|
64 |
+
1,
|
65 |
+
1,
|
66 |
+
2,
|
67 |
+
2,
|
68 |
+
1,
|
69 |
+
2,
|
70 |
+
2,
|
71 |
+
2,
|
72 |
+
2,
|
73 |
+
1,
|
74 |
+
2,
|
75 |
+
2,
|
76 |
+
2,
|
77 |
+
2,
|
78 |
+
2,
|
79 |
+
1,
|
80 |
+
2,
|
81 |
+
2,
|
82 |
+
2,
|
83 |
+
2,
|
84 |
+
1,
|
85 |
+
]
|
86 |
+
|
87 |
+
# 计算总帧数
|
88 |
+
total_frames = sum(word2phone)
|
89 |
+
print(word_level_feature.shape)
|
90 |
+
print(word2phone)
|
91 |
+
phone_level_feature = []
|
92 |
+
for i in range(len(word2phone)):
|
93 |
+
print(word_level_feature[i].shape)
|
94 |
+
|
95 |
+
# 对每个词重复word2phone[i]次
|
96 |
+
repeat_feature = word_level_feature[i].repeat(word2phone[i], 1)
|
97 |
+
phone_level_feature.append(repeat_feature)
|
98 |
+
|
99 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
100 |
+
print(phone_level_feature.shape) # torch.Size([36, 1024])
|
text/cleaner.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from text import chinese, japanese, cleaned_text_to_sequence
|
2 |
+
|
3 |
+
|
4 |
+
language_module_map = {"ZH": chinese, "JP": japanese}
|
5 |
+
|
6 |
+
|
7 |
+
def clean_text(text, language):
|
8 |
+
language_module = language_module_map[language]
|
9 |
+
norm_text = language_module.text_normalize(text)
|
10 |
+
phones, tones, word2ph = language_module.g2p(norm_text)
|
11 |
+
return norm_text, phones, tones, word2ph
|
12 |
+
|
13 |
+
|
14 |
+
def clean_text_bert(text, language):
|
15 |
+
language_module = language_module_map[language]
|
16 |
+
norm_text = language_module.text_normalize(text)
|
17 |
+
phones, tones, word2ph = language_module.g2p(norm_text)
|
18 |
+
bert = language_module.get_bert_feature(norm_text, word2ph)
|
19 |
+
return phones, tones, bert
|
20 |
+
|
21 |
+
|
22 |
+
def text_to_sequence(text, language):
|
23 |
+
norm_text, phones, tones, word2ph = clean_text(text, language)
|
24 |
+
return cleaned_text_to_sequence(phones, tones, language)
|
25 |
+
|
26 |
+
|
27 |
+
if __name__ == "__main__":
|
28 |
+
pass
|
text/cmudict.rep
ADDED
The diff for this file is too large to render.
See raw diff
|
|
text/cmudict_cache.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9b21b20325471934ba92f2e4a5976989e7d920caa32e7a286eacb027d197949
|
3 |
+
size 6212655
|
text/english.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from g2p_en import G2p
|
5 |
+
|
6 |
+
from text import symbols
|
7 |
+
|
8 |
+
current_file_path = os.path.dirname(__file__)
|
9 |
+
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
|
10 |
+
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
|
11 |
+
_g2p = G2p()
|
12 |
+
|
13 |
+
arpa = {
|
14 |
+
"AH0",
|
15 |
+
"S",
|
16 |
+
"AH1",
|
17 |
+
"EY2",
|
18 |
+
"AE2",
|
19 |
+
"EH0",
|
20 |
+
"OW2",
|
21 |
+
"UH0",
|
22 |
+
"NG",
|
23 |
+
"B",
|
24 |
+
"G",
|
25 |
+
"AY0",
|
26 |
+
"M",
|
27 |
+
"AA0",
|
28 |
+
"F",
|
29 |
+
"AO0",
|
30 |
+
"ER2",
|
31 |
+
"UH1",
|
32 |
+
"IY1",
|
33 |
+
"AH2",
|
34 |
+
"DH",
|
35 |
+
"IY0",
|
36 |
+
"EY1",
|
37 |
+
"IH0",
|
38 |
+
"K",
|
39 |
+
"N",
|
40 |
+
"W",
|
41 |
+
"IY2",
|
42 |
+
"T",
|
43 |
+
"AA1",
|
44 |
+
"ER1",
|
45 |
+
"EH2",
|
46 |
+
"OY0",
|
47 |
+
"UH2",
|
48 |
+
"UW1",
|
49 |
+
"Z",
|
50 |
+
"AW2",
|
51 |
+
"AW1",
|
52 |
+
"V",
|
53 |
+
"UW2",
|
54 |
+
"AA2",
|
55 |
+
"ER",
|
56 |
+
"AW0",
|
57 |
+
"UW0",
|
58 |
+
"R",
|
59 |
+
"OW1",
|
60 |
+
"EH1",
|
61 |
+
"ZH",
|
62 |
+
"AE0",
|
63 |
+
"IH2",
|
64 |
+
"IH",
|
65 |
+
"Y",
|
66 |
+
"JH",
|
67 |
+
"P",
|
68 |
+
"AY1",
|
69 |
+
"EY0",
|
70 |
+
"OY2",
|
71 |
+
"TH",
|
72 |
+
"HH",
|
73 |
+
"D",
|
74 |
+
"ER0",
|
75 |
+
"CH",
|
76 |
+
"AO1",
|
77 |
+
"AE1",
|
78 |
+
"AO2",
|
79 |
+
"OY1",
|
80 |
+
"AY2",
|
81 |
+
"IH1",
|
82 |
+
"OW0",
|
83 |
+
"L",
|
84 |
+
"SH",
|
85 |
+
}
|
86 |
+
|
87 |
+
|
88 |
+
def post_replace_ph(ph):
|
89 |
+
rep_map = {
|
90 |
+
":": ",",
|
91 |
+
";": ",",
|
92 |
+
",": ",",
|
93 |
+
"。": ".",
|
94 |
+
"!": "!",
|
95 |
+
"?": "?",
|
96 |
+
"\n": ".",
|
97 |
+
"·": ",",
|
98 |
+
"、": ",",
|
99 |
+
"...": "…",
|
100 |
+
"v": "V",
|
101 |
+
}
|
102 |
+
if ph in rep_map.keys():
|
103 |
+
ph = rep_map[ph]
|
104 |
+
if ph in symbols:
|
105 |
+
return ph
|
106 |
+
if ph not in symbols:
|
107 |
+
ph = "UNK"
|
108 |
+
return ph
|
109 |
+
|
110 |
+
|
111 |
+
def read_dict():
|
112 |
+
g2p_dict = {}
|
113 |
+
start_line = 49
|
114 |
+
with open(CMU_DICT_PATH) as f:
|
115 |
+
line = f.readline()
|
116 |
+
line_index = 1
|
117 |
+
while line:
|
118 |
+
if line_index >= start_line:
|
119 |
+
line = line.strip()
|
120 |
+
word_split = line.split(" ")
|
121 |
+
word = word_split[0]
|
122 |
+
|
123 |
+
syllable_split = word_split[1].split(" - ")
|
124 |
+
g2p_dict[word] = []
|
125 |
+
for syllable in syllable_split:
|
126 |
+
phone_split = syllable.split(" ")
|
127 |
+
g2p_dict[word].append(phone_split)
|
128 |
+
|
129 |
+
line_index = line_index + 1
|
130 |
+
line = f.readline()
|
131 |
+
|
132 |
+
return g2p_dict
|
133 |
+
|
134 |
+
|
135 |
+
def cache_dict(g2p_dict, file_path):
|
136 |
+
with open(file_path, "wb") as pickle_file:
|
137 |
+
pickle.dump(g2p_dict, pickle_file)
|
138 |
+
|
139 |
+
|
140 |
+
def get_dict():
|
141 |
+
if os.path.exists(CACHE_PATH):
|
142 |
+
with open(CACHE_PATH, "rb") as pickle_file:
|
143 |
+
g2p_dict = pickle.load(pickle_file)
|
144 |
+
else:
|
145 |
+
g2p_dict = read_dict()
|
146 |
+
cache_dict(g2p_dict, CACHE_PATH)
|
147 |
+
|
148 |
+
return g2p_dict
|
149 |
+
|
150 |
+
|
151 |
+
eng_dict = get_dict()
|
152 |
+
|
153 |
+
|
154 |
+
def refine_ph(phn):
|
155 |
+
tone = 0
|
156 |
+
if re.search(r"\d$", phn):
|
157 |
+
tone = int(phn[-1]) + 1
|
158 |
+
phn = phn[:-1]
|
159 |
+
return phn.lower(), tone
|
160 |
+
|
161 |
+
|
162 |
+
def refine_syllables(syllables):
|
163 |
+
tones = []
|
164 |
+
phonemes = []
|
165 |
+
for phn_list in syllables:
|
166 |
+
for i in range(len(phn_list)):
|
167 |
+
phn = phn_list[i]
|
168 |
+
phn, tone = refine_ph(phn)
|
169 |
+
phonemes.append(phn)
|
170 |
+
tones.append(tone)
|
171 |
+
return phonemes, tones
|
172 |
+
|
173 |
+
|
174 |
+
def text_normalize(text):
|
175 |
+
# todo: eng text normalize
|
176 |
+
return text
|
177 |
+
|
178 |
+
|
179 |
+
def g2p(text):
|
180 |
+
phones = []
|
181 |
+
tones = []
|
182 |
+
words = re.split(r"([,;.\-\?\!\s+])", text)
|
183 |
+
for w in words:
|
184 |
+
if w.upper() in eng_dict:
|
185 |
+
phns, tns = refine_syllables(eng_dict[w.upper()])
|
186 |
+
phones += phns
|
187 |
+
tones += tns
|
188 |
+
else:
|
189 |
+
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
|
190 |
+
for ph in phone_list:
|
191 |
+
if ph in arpa:
|
192 |
+
ph, tn = refine_ph(ph)
|
193 |
+
phones.append(ph)
|
194 |
+
tones.append(tn)
|
195 |
+
else:
|
196 |
+
phones.append(ph)
|
197 |
+
tones.append(0)
|
198 |
+
# todo: implement word2ph
|
199 |
+
word2ph = [1 for i in phones]
|
200 |
+
|
201 |
+
phones = [post_replace_ph(i) for i in phones]
|
202 |
+
return phones, tones, word2ph
|
203 |
+
|
204 |
+
|
205 |
+
if __name__ == "__main__":
|
206 |
+
# print(get_dict())
|
207 |
+
# print(eng_word_to_phoneme("hello"))
|
208 |
+
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
|
209 |
+
# all_phones = set()
|
210 |
+
# for k, syllables in eng_dict.items():
|
211 |
+
# for group in syllables:
|
212 |
+
# for ph in group:
|
213 |
+
# all_phones.add(ph)
|
214 |
+
# print(all_phones)
|
text/english_bert_mock.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def get_bert_feature(norm_text, word2ph):
|
5 |
+
return torch.zeros(1024, sum(word2ph))
|
text/japanese.py
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Convert Japanese text to phonemes which is
|
2 |
+
# compatible with Julius https://github.com/julius-speech/segmentation-kit
|
3 |
+
import re
|
4 |
+
import unicodedata
|
5 |
+
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
+
from text import punctuation, symbols
|
9 |
+
|
10 |
+
try:
|
11 |
+
import MeCab
|
12 |
+
except ImportError as e:
|
13 |
+
raise ImportError("Japanese requires mecab-python3 and unidic-lite.") from e
|
14 |
+
from num2words import num2words
|
15 |
+
|
16 |
+
_CONVRULES = [
|
17 |
+
# Conversion of 2 letters
|
18 |
+
"アァ/ a a",
|
19 |
+
"イィ/ i i",
|
20 |
+
"イェ/ i e",
|
21 |
+
"イャ/ y a",
|
22 |
+
"ウゥ/ u:",
|
23 |
+
"エェ/ e e",
|
24 |
+
"オォ/ o:",
|
25 |
+
"カァ/ k a:",
|
26 |
+
"キィ/ k i:",
|
27 |
+
"クゥ/ k u:",
|
28 |
+
"クャ/ ky a",
|
29 |
+
"クュ/ ky u",
|
30 |
+
"クョ/ ky o",
|
31 |
+
"ケェ/ k e:",
|
32 |
+
"コォ/ k o:",
|
33 |
+
"ガァ/ g a:",
|
34 |
+
"ギィ/ g i:",
|
35 |
+
"グゥ/ g u:",
|
36 |
+
"グャ/ gy a",
|
37 |
+
"グュ/ gy u",
|
38 |
+
"グョ/ gy o",
|
39 |
+
"ゲェ/ g e:",
|
40 |
+
"ゴォ/ g o:",
|
41 |
+
"サァ/ s a:",
|
42 |
+
"シィ/ sh i:",
|
43 |
+
"スゥ/ s u:",
|
44 |
+
"スャ/ sh a",
|
45 |
+
"スュ/ sh u",
|
46 |
+
"スョ/ sh o",
|
47 |
+
"セェ/ s e:",
|
48 |
+
"ソォ/ s o:",
|
49 |
+
"ザァ/ z a:",
|
50 |
+
"ジィ/ j i:",
|
51 |
+
"ズゥ/ z u:",
|
52 |
+
"ズャ/ zy a",
|
53 |
+
"ズュ/ zy u",
|
54 |
+
"ズョ/ zy o",
|
55 |
+
"ゼェ/ z e:",
|
56 |
+
"ゾォ/ z o:",
|
57 |
+
"タァ/ t a:",
|
58 |
+
"チィ/ ch i:",
|
59 |
+
"ツァ/ ts a",
|
60 |
+
"ツィ/ ts i",
|
61 |
+
"ツゥ/ ts u:",
|
62 |
+
"ツャ/ ch a",
|
63 |
+
"ツュ/ ch u",
|
64 |
+
"ツョ/ ch o",
|
65 |
+
"ツェ/ ts e",
|
66 |
+
"ツォ/ ts o",
|
67 |
+
"テェ/ t e:",
|
68 |
+
"トォ/ t o:",
|
69 |
+
"ダァ/ d a:",
|
70 |
+
"ヂィ/ j i:",
|
71 |
+
"ヅゥ/ d u:",
|
72 |
+
"ヅャ/ zy a",
|
73 |
+
"ヅュ/ zy u",
|
74 |
+
"ヅョ/ zy o",
|
75 |
+
"デェ/ d e:",
|
76 |
+
"ドォ/ d o:",
|
77 |
+
"ナァ/ n a:",
|
78 |
+
"ニィ/ n i:",
|
79 |
+
"ヌゥ/ n u:",
|
80 |
+
"ヌャ/ ny a",
|
81 |
+
"ヌュ/ ny u",
|
82 |
+
"ヌョ/ ny o",
|
83 |
+
"ネェ/ n e:",
|
84 |
+
"ノォ/ n o:",
|
85 |
+
"ハァ/ h a:",
|
86 |
+
"ヒィ/ h i:",
|
87 |
+
"フゥ/ f u:",
|
88 |
+
"フャ/ hy a",
|
89 |
+
"フュ/ hy u",
|
90 |
+
"フョ/ hy o",
|
91 |
+
"ヘェ/ h e:",
|
92 |
+
"ホォ/ h o:",
|
93 |
+
"バァ/ b a:",
|
94 |
+
"ビィ/ b i:",
|
95 |
+
"ブゥ/ b u:",
|
96 |
+
"フャ/ hy a",
|
97 |
+
"ブュ/ by u",
|
98 |
+
"フョ/ hy o",
|
99 |
+
"ベェ/ b e:",
|
100 |
+
"ボォ/ b o:",
|
101 |
+
"パァ/ p a:",
|
102 |
+
"ピィ/ p i:",
|
103 |
+
"プゥ/ p u:",
|
104 |
+
"プャ/ py a",
|
105 |
+
"プュ/ py u",
|
106 |
+
"プョ/ py o",
|
107 |
+
"ペェ/ p e:",
|
108 |
+
"ポォ/ p o:",
|
109 |
+
"マァ/ m a:",
|
110 |
+
"ミィ/ m i:",
|
111 |
+
"ムゥ/ m u:",
|
112 |
+
"ムャ/ my a",
|
113 |
+
"ムュ/ my u",
|
114 |
+
"ムョ/ my o",
|
115 |
+
"メェ/ m e:",
|
116 |
+
"モォ/ m o:",
|
117 |
+
"ヤァ/ y a:",
|
118 |
+
"ユゥ/ y u:",
|
119 |
+
"ユャ/ y a:",
|
120 |
+
"ユュ/ y u:",
|
121 |
+
"ユョ/ y o:",
|
122 |
+
"ヨォ/ y o:",
|
123 |
+
"ラァ/ r a:",
|
124 |
+
"リィ/ r i:",
|
125 |
+
"ルゥ/ r u:",
|
126 |
+
"ルャ/ ry a",
|
127 |
+
"ルュ/ ry u",
|
128 |
+
"ルョ/ ry o",
|
129 |
+
"レェ/ r e:",
|
130 |
+
"ロォ/ r o:",
|
131 |
+
"ワァ/ w a:",
|
132 |
+
"ヲォ/ o:",
|
133 |
+
"ディ/ d i",
|
134 |
+
"デェ/ d e:",
|
135 |
+
"デャ/ dy a",
|
136 |
+
"デュ/ dy u",
|
137 |
+
"デョ/ dy o",
|
138 |
+
"ティ/ t i",
|
139 |
+
"テェ/ t e:",
|
140 |
+
"テャ/ ty a",
|
141 |
+
"テュ/ ty u",
|
142 |
+
"テョ/ ty o",
|
143 |
+
"スィ/ s i",
|
144 |
+
"ズァ/ z u a",
|
145 |
+
"ズィ/ z i",
|
146 |
+
"ズゥ/ z u",
|
147 |
+
"ズャ/ zy a",
|
148 |
+
"ズュ/ zy u",
|
149 |
+
"ズョ/ zy o",
|
150 |
+
"ズェ/ z e",
|
151 |
+
"ズォ/ z o",
|
152 |
+
"キャ/ ky a",
|
153 |
+
"キュ/ ky u",
|
154 |
+
"キョ/ ky o",
|
155 |
+
"シャ/ sh a",
|
156 |
+
"シュ/ sh u",
|
157 |
+
"シェ/ sh e",
|
158 |
+
"ショ/ sh o",
|
159 |
+
"チャ/ ch a",
|
160 |
+
"チュ/ ch u",
|
161 |
+
"チェ/ ch e",
|
162 |
+
"チョ/ ch o",
|
163 |
+
"トゥ/ t u",
|
164 |
+
"トャ/ ty a",
|
165 |
+
"トュ/ ty u",
|
166 |
+
"トョ/ ty o",
|
167 |
+
"ドァ/ d o a",
|
168 |
+
"ドゥ/ d u",
|
169 |
+
"ドャ/ dy a",
|
170 |
+
"ドュ/ dy u",
|
171 |
+
"ドョ/ dy o",
|
172 |
+
"ドォ/ d o:",
|
173 |
+
"ニャ/ ny a",
|
174 |
+
"ニュ/ ny u",
|
175 |
+
"ニョ/ ny o",
|
176 |
+
"ヒャ/ hy a",
|
177 |
+
"ヒュ/ hy u",
|
178 |
+
"ヒョ/ hy o",
|
179 |
+
"ミャ/ my a",
|
180 |
+
"ミュ/ my u",
|
181 |
+
"ミョ/ my o",
|
182 |
+
"リャ/ ry a",
|
183 |
+
"リュ/ ry u",
|
184 |
+
"リョ/ ry o",
|
185 |
+
"ギャ/ gy a",
|
186 |
+
"ギュ/ gy u",
|
187 |
+
"ギョ/ gy o",
|
188 |
+
"ヂェ/ j e",
|
189 |
+
"ヂャ/ j a",
|
190 |
+
"ヂュ/ j u",
|
191 |
+
"ヂョ/ j o",
|
192 |
+
"ジェ/ j e",
|
193 |
+
"ジャ/ j a",
|
194 |
+
"ジュ/ j u",
|
195 |
+
"ジョ/ j o",
|
196 |
+
"ビャ/ by a",
|
197 |
+
"ビュ/ by u",
|
198 |
+
"ビョ/ by o",
|
199 |
+
"ピャ/ py a",
|
200 |
+
"ピュ/ py u",
|
201 |
+
"ピョ/ py o",
|
202 |
+
"ウァ/ u a",
|
203 |
+
"ウィ/ w i",
|
204 |
+
"ウェ/ w e",
|
205 |
+
"ウォ/ w o",
|
206 |
+
"ファ/ f a",
|
207 |
+
"フィ/ f i",
|
208 |
+
"フゥ/ f u",
|
209 |
+
"フャ/ hy a",
|
210 |
+
"フュ/ hy u",
|
211 |
+
"フョ/ hy o",
|
212 |
+
"フェ/ f e",
|
213 |
+
"フォ/ f o",
|
214 |
+
"ヴァ/ b a",
|
215 |
+
"ヴィ/ b i",
|
216 |
+
"ヴェ/ b e",
|
217 |
+
"ヴォ/ b o",
|
218 |
+
"ヴュ/ by u",
|
219 |
+
# Conversion of 1 letter
|
220 |
+
"ア/ a",
|
221 |
+
"イ/ i",
|
222 |
+
"ウ/ u",
|
223 |
+
"エ/ e",
|
224 |
+
"オ/ o",
|
225 |
+
"カ/ k a",
|
226 |
+
"キ/ k i",
|
227 |
+
"ク/ k u",
|
228 |
+
"ケ/ k e",
|
229 |
+
"コ/ k o",
|
230 |
+
"サ/ s a",
|
231 |
+
"シ/ sh i",
|
232 |
+
"ス/ s u",
|
233 |
+
"セ/ s e",
|
234 |
+
"ソ/ s o",
|
235 |
+
"タ/ t a",
|
236 |
+
"チ/ ch i",
|
237 |
+
"ツ/ ts u",
|
238 |
+
"テ/ t e",
|
239 |
+
"ト/ t o",
|
240 |
+
"ナ/ n a",
|
241 |
+
"ニ/ n i",
|
242 |
+
"ヌ/ n u",
|
243 |
+
"ネ/ n e",
|
244 |
+
"ノ/ n o",
|
245 |
+
"ハ/ h a",
|
246 |
+
"ヒ/ h i",
|
247 |
+
"フ/ f u",
|
248 |
+
"ヘ/ h e",
|
249 |
+
"ホ/ h o",
|
250 |
+
"マ/ m a",
|
251 |
+
"ミ/ m i",
|
252 |
+
"ム/ m u",
|
253 |
+
"メ/ m e",
|
254 |
+
"モ/ m o",
|
255 |
+
"ラ/ r a",
|
256 |
+
"リ/ r i",
|
257 |
+
"ル/ r u",
|
258 |
+
"レ/ r e",
|
259 |
+
"ロ/ r o",
|
260 |
+
"ガ/ g a",
|
261 |
+
"ギ/ g i",
|
262 |
+
"グ/ g u",
|
263 |
+
"ゲ/ g e",
|
264 |
+
"ゴ/ g o",
|
265 |
+
"ザ/ z a",
|
266 |
+
"ジ/ j i",
|
267 |
+
"ズ/ z u",
|
268 |
+
"ゼ/ z e",
|
269 |
+
"ゾ/ z o",
|
270 |
+
"ダ/ d a",
|
271 |
+
"ヂ/ j i",
|
272 |
+
"ヅ/ z u",
|
273 |
+
"デ/ d e",
|
274 |
+
"ド/ d o",
|
275 |
+
"バ/ b a",
|
276 |
+
"ビ/ b i",
|
277 |
+
"ブ/ b u",
|
278 |
+
"ベ/ b e",
|
279 |
+
"ボ/ b o",
|
280 |
+
"パ/ p a",
|
281 |
+
"ピ/ p i",
|
282 |
+
"プ/ p u",
|
283 |
+
"ペ/ p e",
|
284 |
+
"ポ/ p o",
|
285 |
+
"ヤ/ y a",
|
286 |
+
"ユ/ y u",
|
287 |
+
"ヨ/ y o",
|
288 |
+
"ワ/ w a",
|
289 |
+
"ヰ/ i",
|
290 |
+
"ヱ/ e",
|
291 |
+
"ヲ/ o",
|
292 |
+
"ン/ N",
|
293 |
+
"ッ/ q",
|
294 |
+
"ヴ/ b u",
|
295 |
+
"ー/:",
|
296 |
+
# Try converting broken text
|
297 |
+
"ァ/ a",
|
298 |
+
"ィ/ i",
|
299 |
+
"ゥ/ u",
|
300 |
+
"ェ/ e",
|
301 |
+
"ォ/ o",
|
302 |
+
"ヮ/ w a",
|
303 |
+
"ォ/ o",
|
304 |
+
# Symbols
|
305 |
+
"、/ ,",
|
306 |
+
"。/ .",
|
307 |
+
"!/ !",
|
308 |
+
"?/ ?",
|
309 |
+
"・/ ,",
|
310 |
+
]
|
311 |
+
|
312 |
+
_COLON_RX = re.compile(":+")
|
313 |
+
_REJECT_RX = re.compile("[^ a-zA-Z:,.?]")
|
314 |
+
|
315 |
+
|
316 |
+
def _makerulemap():
|
317 |
+
l = [tuple(x.split("/")) for x in _CONVRULES]
|
318 |
+
return tuple({k: v for k, v in l if len(k) == i} for i in (1, 2))
|
319 |
+
|
320 |
+
|
321 |
+
_RULEMAP1, _RULEMAP2 = _makerulemap()
|
322 |
+
|
323 |
+
|
324 |
+
def kata2phoneme(text: str) -> str:
|
325 |
+
"""Convert katakana text to phonemes."""
|
326 |
+
text = text.strip()
|
327 |
+
res = []
|
328 |
+
while text:
|
329 |
+
if len(text) >= 2:
|
330 |
+
x = _RULEMAP2.get(text[:2])
|
331 |
+
if x is not None:
|
332 |
+
text = text[2:]
|
333 |
+
res += x.split(" ")[1:]
|
334 |
+
continue
|
335 |
+
x = _RULEMAP1.get(text[0])
|
336 |
+
if x is not None:
|
337 |
+
text = text[1:]
|
338 |
+
res += x.split(" ")[1:]
|
339 |
+
continue
|
340 |
+
res.append(text[0])
|
341 |
+
text = text[1:]
|
342 |
+
# res = _COLON_RX.sub(":", res)
|
343 |
+
return res
|
344 |
+
|
345 |
+
|
346 |
+
_KATAKANA = "".join(chr(ch) for ch in range(ord("ァ"), ord("ン") + 1))
|
347 |
+
_HIRAGANA = "".join(chr(ch) for ch in range(ord("ぁ"), ord("ん") + 1))
|
348 |
+
_HIRA2KATATRANS = str.maketrans(_HIRAGANA, _KATAKANA)
|
349 |
+
|
350 |
+
|
351 |
+
def hira2kata(text: str) -> str:
|
352 |
+
text = text.translate(_HIRA2KATATRANS)
|
353 |
+
return text.replace("う゛", "ヴ")
|
354 |
+
|
355 |
+
|
356 |
+
_SYMBOL_TOKENS = set(list("・、。?!"))
|
357 |
+
_NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
|
358 |
+
_TAGGER = MeCab.Tagger()
|
359 |
+
|
360 |
+
|
361 |
+
def text2kata(text: str) -> str:
|
362 |
+
parsed = _TAGGER.parse(text)
|
363 |
+
res = []
|
364 |
+
for line in parsed.split("\n"):
|
365 |
+
if line == "EOS":
|
366 |
+
break
|
367 |
+
parts = line.split("\t")
|
368 |
+
|
369 |
+
word, yomi = parts[0], parts[1]
|
370 |
+
if yomi:
|
371 |
+
res.append(yomi)
|
372 |
+
else:
|
373 |
+
if word in _SYMBOL_TOKENS:
|
374 |
+
res.append(word)
|
375 |
+
elif word in ("っ", "ッ"):
|
376 |
+
res.append("ッ")
|
377 |
+
elif word in _NO_YOMI_TOKENS:
|
378 |
+
pass
|
379 |
+
else:
|
380 |
+
res.append(word)
|
381 |
+
return hira2kata("".join(res))
|
382 |
+
|
383 |
+
|
384 |
+
_ALPHASYMBOL_YOMI = {
|
385 |
+
"#": "シャープ",
|
386 |
+
"%": "パーセント",
|
387 |
+
"&": "アンド",
|
388 |
+
"+": "プラス",
|
389 |
+
"-": "マイナス",
|
390 |
+
":": "コロン",
|
391 |
+
";": "セミコロン",
|
392 |
+
"<": "小なり",
|
393 |
+
"=": "イコール",
|
394 |
+
">": "大なり",
|
395 |
+
"@": "アット",
|
396 |
+
"a": "エー",
|
397 |
+
"b": "ビー",
|
398 |
+
"c": "シー",
|
399 |
+
"d": "ディー",
|
400 |
+
"e": "イー",
|
401 |
+
"f": "エフ",
|
402 |
+
"g": "ジー",
|
403 |
+
"h": "エイチ",
|
404 |
+
"i": "アイ",
|
405 |
+
"j": "ジェー",
|
406 |
+
"k": "ケー",
|
407 |
+
"l": "エル",
|
408 |
+
"m": "エム",
|
409 |
+
"n": "エヌ",
|
410 |
+
"o": "オー",
|
411 |
+
"p": "ピー",
|
412 |
+
"q": "キュー",
|
413 |
+
"r": "アール",
|
414 |
+
"s": "エス",
|
415 |
+
"t": "ティー",
|
416 |
+
"u": "ユー",
|
417 |
+
"v": "ブイ",
|
418 |
+
"w": "ダブリュー",
|
419 |
+
"x": "エックス",
|
420 |
+
"y": "ワイ",
|
421 |
+
"z": "ゼット",
|
422 |
+
"α": "アルファ",
|
423 |
+
"β": "ベータ",
|
424 |
+
"γ": "ガンマ",
|
425 |
+
"δ": "デルタ",
|
426 |
+
"ε": "イプシロン",
|
427 |
+
"ζ": "ゼータ",
|
428 |
+
"η": "イータ",
|
429 |
+
"θ": "シータ",
|
430 |
+
"ι": "イオタ",
|
431 |
+
"κ": "カッパ",
|
432 |
+
"λ": "ラムダ",
|
433 |
+
"μ": "ミュー",
|
434 |
+
"ν": "ニュー",
|
435 |
+
"ξ": "クサイ",
|
436 |
+
"ο": "オミクロン",
|
437 |
+
"π": "パイ",
|
438 |
+
"ρ": "ロー",
|
439 |
+
"σ": "シグマ",
|
440 |
+
"τ": "タウ",
|
441 |
+
"υ": "ウプシロン",
|
442 |
+
"φ": "ファイ",
|
443 |
+
"χ": "カイ",
|
444 |
+
"ψ": "プサイ",
|
445 |
+
"ω": "オメガ",
|
446 |
+
}
|
447 |
+
|
448 |
+
|
449 |
+
_NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
|
450 |
+
_CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
|
451 |
+
_CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
|
452 |
+
_NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
|
453 |
+
|
454 |
+
|
455 |
+
def japanese_convert_numbers_to_words(text: str) -> str:
|
456 |
+
res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
|
457 |
+
res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
|
458 |
+
res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
|
459 |
+
return res
|
460 |
+
|
461 |
+
|
462 |
+
def japanese_convert_alpha_symbols_to_words(text: str) -> str:
|
463 |
+
return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
|
464 |
+
|
465 |
+
|
466 |
+
def japanese_text_to_phonemes(text: str) -> str:
|
467 |
+
"""Convert Japanese text to phonemes."""
|
468 |
+
res = unicodedata.normalize("NFKC", text)
|
469 |
+
res = japanese_convert_numbers_to_words(res)
|
470 |
+
# res = japanese_convert_alpha_symbols_to_words(res)
|
471 |
+
res = text2kata(res)
|
472 |
+
res = kata2phoneme(res)
|
473 |
+
return res
|
474 |
+
|
475 |
+
|
476 |
+
def is_japanese_character(char):
|
477 |
+
# 定义日语文字系统的 Unicode 范围
|
478 |
+
japanese_ranges = [
|
479 |
+
(0x3040, 0x309F), # 平假名
|
480 |
+
(0x30A0, 0x30FF), # 片假名
|
481 |
+
(0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
|
482 |
+
(0x3400, 0x4DBF), # 汉字扩展 A
|
483 |
+
(0x20000, 0x2A6DF), # 汉字扩展 B
|
484 |
+
# 可以根据需要添加其他汉字扩展范围
|
485 |
+
]
|
486 |
+
|
487 |
+
# 将字符的 Unicode 编码转换为整数
|
488 |
+
char_code = ord(char)
|
489 |
+
|
490 |
+
# 检查字符是否在任何一个日语范围内
|
491 |
+
for start, end in japanese_ranges:
|
492 |
+
if start <= char_code <= end:
|
493 |
+
return True
|
494 |
+
|
495 |
+
return False
|
496 |
+
|
497 |
+
|
498 |
+
rep_map = {
|
499 |
+
":": ",",
|
500 |
+
";": ",",
|
501 |
+
",": ",",
|
502 |
+
"。": ".",
|
503 |
+
"!": "!",
|
504 |
+
"?": "?",
|
505 |
+
"\n": ".",
|
506 |
+
"·": ",",
|
507 |
+
"、": ",",
|
508 |
+
"...": "…",
|
509 |
+
}
|
510 |
+
|
511 |
+
|
512 |
+
def replace_punctuation(text):
|
513 |
+
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
514 |
+
|
515 |
+
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
516 |
+
|
517 |
+
replaced_text = re.sub(
|
518 |
+
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF"
|
519 |
+
+ "".join(punctuation)
|
520 |
+
+ r"]+",
|
521 |
+
"",
|
522 |
+
replaced_text,
|
523 |
+
)
|
524 |
+
|
525 |
+
return replaced_text
|
526 |
+
|
527 |
+
|
528 |
+
def text_normalize(text):
|
529 |
+
res = unicodedata.normalize("NFKC", text)
|
530 |
+
res = japanese_convert_numbers_to_words(res)
|
531 |
+
# res = "".join([i for i in res if is_japanese_character(i)])
|
532 |
+
res = replace_punctuation(res)
|
533 |
+
return res
|
534 |
+
|
535 |
+
|
536 |
+
def distribute_phone(n_phone, n_word):
|
537 |
+
phones_per_word = [0] * n_word
|
538 |
+
for task in range(n_phone):
|
539 |
+
min_tasks = min(phones_per_word)
|
540 |
+
min_index = phones_per_word.index(min_tasks)
|
541 |
+
phones_per_word[min_index] += 1
|
542 |
+
return phones_per_word
|
543 |
+
|
544 |
+
|
545 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
546 |
+
|
547 |
+
|
548 |
+
def g2p(norm_text):
|
549 |
+
tokenized = tokenizer.tokenize(norm_text)
|
550 |
+
phs = []
|
551 |
+
ph_groups = []
|
552 |
+
for t in tokenized:
|
553 |
+
if not t.startswith("#"):
|
554 |
+
ph_groups.append([t])
|
555 |
+
else:
|
556 |
+
ph_groups[-1].append(t.replace("#", ""))
|
557 |
+
word2ph = []
|
558 |
+
for group in ph_groups:
|
559 |
+
phonemes = kata2phoneme(text2kata("".join(group)))
|
560 |
+
# phonemes = [i for i in phonemes if i in symbols]
|
561 |
+
for i in phonemes:
|
562 |
+
assert i in symbols, (group, norm_text, tokenized)
|
563 |
+
phone_len = len(phonemes)
|
564 |
+
word_len = len(group)
|
565 |
+
|
566 |
+
aaa = distribute_phone(phone_len, word_len)
|
567 |
+
word2ph += aaa
|
568 |
+
|
569 |
+
phs += phonemes
|
570 |
+
phones = ["_"] + phs + ["_"]
|
571 |
+
tones = [0 for i in phones]
|
572 |
+
word2ph = [1] + word2ph + [1]
|
573 |
+
return phones, tones, word2ph
|
574 |
+
|
575 |
+
|
576 |
+
if __name__ == "__main__":
|
577 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
578 |
+
text = "hello,こんにちは、世界!……"
|
579 |
+
from text.japanese_bert import get_bert_feature
|
580 |
+
|
581 |
+
text = text_normalize(text)
|
582 |
+
print(text)
|
583 |
+
phones, tones, word2ph = g2p(text)
|
584 |
+
bert = get_bert_feature(text, word2ph)
|
585 |
+
|
586 |
+
print(phones, tones, word2ph, bert.shape)
|
text/japanese_bert.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
+
import sys
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
6 |
+
|
7 |
+
models = dict()
|
8 |
+
|
9 |
+
|
10 |
+
def get_bert_feature(text, word2ph, device=None):
|
11 |
+
if (
|
12 |
+
sys.platform == "darwin"
|
13 |
+
and torch.backends.mps.is_available()
|
14 |
+
and device == "cpu"
|
15 |
+
):
|
16 |
+
device = "mps"
|
17 |
+
if not device:
|
18 |
+
device = "cuda"
|
19 |
+
if device not in models.keys():
|
20 |
+
models[device] = AutoModelForMaskedLM.from_pretrained(
|
21 |
+
"./bert/bert-base-japanese-v3"
|
22 |
+
).to(device)
|
23 |
+
with torch.no_grad():
|
24 |
+
inputs = tokenizer(text, return_tensors="pt")
|
25 |
+
for i in inputs:
|
26 |
+
inputs[i] = inputs[i].to(device)
|
27 |
+
res = models[device](**inputs, output_hidden_states=True)
|
28 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
29 |
+
assert inputs["input_ids"].shape[-1] == len(word2ph)
|
30 |
+
word2phone = word2ph
|
31 |
+
phone_level_feature = []
|
32 |
+
for i in range(len(word2phone)):
|
33 |
+
repeat_feature = res[i].repeat(word2phone[i], 1)
|
34 |
+
phone_level_feature.append(repeat_feature)
|
35 |
+
|
36 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
37 |
+
|
38 |
+
return phone_level_feature.T
|
text/opencpop-strict.txt
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a AA a
|
2 |
+
ai AA ai
|
3 |
+
an AA an
|
4 |
+
ang AA ang
|
5 |
+
ao AA ao
|
6 |
+
ba b a
|
7 |
+
bai b ai
|
8 |
+
ban b an
|
9 |
+
bang b ang
|
10 |
+
bao b ao
|
11 |
+
bei b ei
|
12 |
+
ben b en
|
13 |
+
beng b eng
|
14 |
+
bi b i
|
15 |
+
bian b ian
|
16 |
+
biao b iao
|
17 |
+
bie b ie
|
18 |
+
bin b in
|
19 |
+
bing b ing
|
20 |
+
bo b o
|
21 |
+
bu b u
|
22 |
+
ca c a
|
23 |
+
cai c ai
|
24 |
+
can c an
|
25 |
+
cang c ang
|
26 |
+
cao c ao
|
27 |
+
ce c e
|
28 |
+
cei c ei
|
29 |
+
cen c en
|
30 |
+
ceng c eng
|
31 |
+
cha ch a
|
32 |
+
chai ch ai
|
33 |
+
chan ch an
|
34 |
+
chang ch ang
|
35 |
+
chao ch ao
|
36 |
+
che ch e
|
37 |
+
chen ch en
|
38 |
+
cheng ch eng
|
39 |
+
chi ch ir
|
40 |
+
chong ch ong
|
41 |
+
chou ch ou
|
42 |
+
chu ch u
|
43 |
+
chua ch ua
|
44 |
+
chuai ch uai
|
45 |
+
chuan ch uan
|
46 |
+
chuang ch uang
|
47 |
+
chui ch ui
|
48 |
+
chun ch un
|
49 |
+
chuo ch uo
|
50 |
+
ci c i0
|
51 |
+
cong c ong
|
52 |
+
cou c ou
|
53 |
+
cu c u
|
54 |
+
cuan c uan
|
55 |
+
cui c ui
|
56 |
+
cun c un
|
57 |
+
cuo c uo
|
58 |
+
da d a
|
59 |
+
dai d ai
|
60 |
+
dan d an
|
61 |
+
dang d ang
|
62 |
+
dao d ao
|
63 |
+
de d e
|
64 |
+
dei d ei
|
65 |
+
den d en
|
66 |
+
deng d eng
|
67 |
+
di d i
|
68 |
+
dia d ia
|
69 |
+
dian d ian
|
70 |
+
diao d iao
|
71 |
+
die d ie
|
72 |
+
ding d ing
|
73 |
+
diu d iu
|
74 |
+
dong d ong
|
75 |
+
dou d ou
|
76 |
+
du d u
|
77 |
+
duan d uan
|
78 |
+
dui d ui
|
79 |
+
dun d un
|
80 |
+
duo d uo
|
81 |
+
e EE e
|
82 |
+
ei EE ei
|
83 |
+
en EE en
|
84 |
+
eng EE eng
|
85 |
+
er EE er
|
86 |
+
fa f a
|
87 |
+
fan f an
|
88 |
+
fang f ang
|
89 |
+
fei f ei
|
90 |
+
fen f en
|
91 |
+
feng f eng
|
92 |
+
fo f o
|
93 |
+
fou f ou
|
94 |
+
fu f u
|
95 |
+
ga g a
|
96 |
+
gai g ai
|
97 |
+
gan g an
|
98 |
+
gang g ang
|
99 |
+
gao g ao
|
100 |
+
ge g e
|
101 |
+
gei g ei
|
102 |
+
gen g en
|
103 |
+
geng g eng
|
104 |
+
gong g ong
|
105 |
+
gou g ou
|
106 |
+
gu g u
|
107 |
+
gua g ua
|
108 |
+
guai g uai
|
109 |
+
guan g uan
|
110 |
+
guang g uang
|
111 |
+
gui g ui
|
112 |
+
gun g un
|
113 |
+
guo g uo
|
114 |
+
ha h a
|
115 |
+
hai h ai
|
116 |
+
han h an
|
117 |
+
hang h ang
|
118 |
+
hao h ao
|
119 |
+
he h e
|
120 |
+
hei h ei
|
121 |
+
hen h en
|
122 |
+
heng h eng
|
123 |
+
hong h ong
|
124 |
+
hou h ou
|
125 |
+
hu h u
|
126 |
+
hua h ua
|
127 |
+
huai h uai
|
128 |
+
huan h uan
|
129 |
+
huang h uang
|
130 |
+
hui h ui
|
131 |
+
hun h un
|
132 |
+
huo h uo
|
133 |
+
ji j i
|
134 |
+
jia j ia
|
135 |
+
jian j ian
|
136 |
+
jiang j iang
|
137 |
+
jiao j iao
|
138 |
+
jie j ie
|
139 |
+
jin j in
|
140 |
+
jing j ing
|
141 |
+
jiong j iong
|
142 |
+
jiu j iu
|
143 |
+
ju j v
|
144 |
+
jv j v
|
145 |
+
juan j van
|
146 |
+
jvan j van
|
147 |
+
jue j ve
|
148 |
+
jve j ve
|
149 |
+
jun j vn
|
150 |
+
jvn j vn
|
151 |
+
ka k a
|
152 |
+
kai k ai
|
153 |
+
kan k an
|
154 |
+
kang k ang
|
155 |
+
kao k ao
|
156 |
+
ke k e
|
157 |
+
kei k ei
|
158 |
+
ken k en
|
159 |
+
keng k eng
|
160 |
+
kong k ong
|
161 |
+
kou k ou
|
162 |
+
ku k u
|
163 |
+
kua k ua
|
164 |
+
kuai k uai
|
165 |
+
kuan k uan
|
166 |
+
kuang k uang
|
167 |
+
kui k ui
|
168 |
+
kun k un
|
169 |
+
kuo k uo
|
170 |
+
la l a
|
171 |
+
lai l ai
|
172 |
+
lan l an
|
173 |
+
lang l ang
|
174 |
+
lao l ao
|
175 |
+
le l e
|
176 |
+
lei l ei
|
177 |
+
leng l eng
|
178 |
+
li l i
|
179 |
+
lia l ia
|
180 |
+
lian l ian
|
181 |
+
liang l iang
|
182 |
+
liao l iao
|
183 |
+
lie l ie
|
184 |
+
lin l in
|
185 |
+
ling l ing
|
186 |
+
liu l iu
|
187 |
+
lo l o
|
188 |
+
long l ong
|
189 |
+
lou l ou
|
190 |
+
lu l u
|
191 |
+
luan l uan
|
192 |
+
lun l un
|
193 |
+
luo l uo
|
194 |
+
lv l v
|
195 |
+
lve l ve
|
196 |
+
ma m a
|
197 |
+
mai m ai
|
198 |
+
man m an
|
199 |
+
mang m ang
|
200 |
+
mao m ao
|
201 |
+
me m e
|
202 |
+
mei m ei
|
203 |
+
men m en
|
204 |
+
meng m eng
|
205 |
+
mi m i
|
206 |
+
mian m ian
|
207 |
+
miao m iao
|
208 |
+
mie m ie
|
209 |
+
min m in
|
210 |
+
ming m ing
|
211 |
+
miu m iu
|
212 |
+
mo m o
|
213 |
+
mou m ou
|
214 |
+
mu m u
|
215 |
+
na n a
|
216 |
+
nai n ai
|
217 |
+
nan n an
|
218 |
+
nang n ang
|
219 |
+
nao n ao
|
220 |
+
ne n e
|
221 |
+
nei n ei
|
222 |
+
nen n en
|
223 |
+
neng n eng
|
224 |
+
ni n i
|
225 |
+
nian n ian
|
226 |
+
niang n iang
|
227 |
+
niao n iao
|
228 |
+
nie n ie
|
229 |
+
nin n in
|
230 |
+
ning n ing
|
231 |
+
niu n iu
|
232 |
+
nong n ong
|
233 |
+
nou n ou
|
234 |
+
nu n u
|
235 |
+
nuan n uan
|
236 |
+
nun n un
|
237 |
+
nuo n uo
|
238 |
+
nv n v
|
239 |
+
nve n ve
|
240 |
+
o OO o
|
241 |
+
ou OO ou
|
242 |
+
pa p a
|
243 |
+
pai p ai
|
244 |
+
pan p an
|
245 |
+
pang p ang
|
246 |
+
pao p ao
|
247 |
+
pei p ei
|
248 |
+
pen p en
|
249 |
+
peng p eng
|
250 |
+
pi p i
|
251 |
+
pian p ian
|
252 |
+
piao p iao
|
253 |
+
pie p ie
|
254 |
+
pin p in
|
255 |
+
ping p ing
|
256 |
+
po p o
|
257 |
+
pou p ou
|
258 |
+
pu p u
|
259 |
+
qi q i
|
260 |
+
qia q ia
|
261 |
+
qian q ian
|
262 |
+
qiang q iang
|
263 |
+
qiao q iao
|
264 |
+
qie q ie
|
265 |
+
qin q in
|
266 |
+
qing q ing
|
267 |
+
qiong q iong
|
268 |
+
qiu q iu
|
269 |
+
qu q v
|
270 |
+
qv q v
|
271 |
+
quan q van
|
272 |
+
qvan q van
|
273 |
+
que q ve
|
274 |
+
qve q ve
|
275 |
+
qun q vn
|
276 |
+
qvn q vn
|
277 |
+
ran r an
|
278 |
+
rang r ang
|
279 |
+
rao r ao
|
280 |
+
re r e
|
281 |
+
ren r en
|
282 |
+
reng r eng
|
283 |
+
ri r ir
|
284 |
+
rong r ong
|
285 |
+
rou r ou
|
286 |
+
ru r u
|
287 |
+
rua r ua
|
288 |
+
ruan r uan
|
289 |
+
rui r ui
|
290 |
+
run r un
|
291 |
+
ruo r uo
|
292 |
+
sa s a
|
293 |
+
sai s ai
|
294 |
+
san s an
|
295 |
+
sang s ang
|
296 |
+
sao s ao
|
297 |
+
se s e
|
298 |
+
sen s en
|
299 |
+
seng s eng
|
300 |
+
sha sh a
|
301 |
+
shai sh ai
|
302 |
+
shan sh an
|
303 |
+
shang sh ang
|
304 |
+
shao sh ao
|
305 |
+
she sh e
|
306 |
+
shei sh ei
|
307 |
+
shen sh en
|
308 |
+
sheng sh eng
|
309 |
+
shi sh ir
|
310 |
+
shou sh ou
|
311 |
+
shu sh u
|
312 |
+
shua sh ua
|
313 |
+
shuai sh uai
|
314 |
+
shuan sh uan
|
315 |
+
shuang sh uang
|
316 |
+
shui sh ui
|
317 |
+
shun sh un
|
318 |
+
shuo sh uo
|
319 |
+
si s i0
|
320 |
+
song s ong
|
321 |
+
sou s ou
|
322 |
+
su s u
|
323 |
+
suan s uan
|
324 |
+
sui s ui
|
325 |
+
sun s un
|
326 |
+
suo s uo
|
327 |
+
ta t a
|
328 |
+
tai t ai
|
329 |
+
tan t an
|
330 |
+
tang t ang
|
331 |
+
tao t ao
|
332 |
+
te t e
|
333 |
+
tei t ei
|
334 |
+
teng t eng
|
335 |
+
ti t i
|
336 |
+
tian t ian
|
337 |
+
tiao t iao
|
338 |
+
tie t ie
|
339 |
+
ting t ing
|
340 |
+
tong t ong
|
341 |
+
tou t ou
|
342 |
+
tu t u
|
343 |
+
tuan t uan
|
344 |
+
tui t ui
|
345 |
+
tun t un
|
346 |
+
tuo t uo
|
347 |
+
wa w a
|
348 |
+
wai w ai
|
349 |
+
wan w an
|
350 |
+
wang w ang
|
351 |
+
wei w ei
|
352 |
+
wen w en
|
353 |
+
weng w eng
|
354 |
+
wo w o
|
355 |
+
wu w u
|
356 |
+
xi x i
|
357 |
+
xia x ia
|
358 |
+
xian x ian
|
359 |
+
xiang x iang
|
360 |
+
xiao x iao
|
361 |
+
xie x ie
|
362 |
+
xin x in
|
363 |
+
xing x ing
|
364 |
+
xiong x iong
|
365 |
+
xiu x iu
|
366 |
+
xu x v
|
367 |
+
xv x v
|
368 |
+
xuan x van
|
369 |
+
xvan x van
|
370 |
+
xue x ve
|
371 |
+
xve x ve
|
372 |
+
xun x vn
|
373 |
+
xvn x vn
|
374 |
+
ya y a
|
375 |
+
yan y En
|
376 |
+
yang y ang
|
377 |
+
yao y ao
|
378 |
+
ye y E
|
379 |
+
yi y i
|
380 |
+
yin y in
|
381 |
+
ying y ing
|
382 |
+
yo y o
|
383 |
+
yong y ong
|
384 |
+
you y ou
|
385 |
+
yu y v
|
386 |
+
yv y v
|
387 |
+
yuan y van
|
388 |
+
yvan y van
|
389 |
+
yue y ve
|
390 |
+
yve y ve
|
391 |
+
yun y vn
|
392 |
+
yvn y vn
|
393 |
+
za z a
|
394 |
+
zai z ai
|
395 |
+
zan z an
|
396 |
+
zang z ang
|
397 |
+
zao z ao
|
398 |
+
ze z e
|
399 |
+
zei z ei
|
400 |
+
zen z en
|
401 |
+
zeng z eng
|
402 |
+
zha zh a
|
403 |
+
zhai zh ai
|
404 |
+
zhan zh an
|
405 |
+
zhang zh ang
|
406 |
+
zhao zh ao
|
407 |
+
zhe zh e
|
408 |
+
zhei zh ei
|
409 |
+
zhen zh en
|
410 |
+
zheng zh eng
|
411 |
+
zhi zh ir
|
412 |
+
zhong zh ong
|
413 |
+
zhou zh ou
|
414 |
+
zhu zh u
|
415 |
+
zhua zh ua
|
416 |
+
zhuai zh uai
|
417 |
+
zhuan zh uan
|
418 |
+
zhuang zh uang
|
419 |
+
zhui zh ui
|
420 |
+
zhun zh un
|
421 |
+
zhuo zh uo
|
422 |
+
zi z i0
|
423 |
+
zong z ong
|
424 |
+
zou z ou
|
425 |
+
zu z u
|
426 |
+
zuan z uan
|
427 |
+
zui z ui
|
428 |
+
zun z un
|
429 |
+
zuo z uo
|