Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import LEDForConditionalGeneration, LEDTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model = LEDForConditionalGeneration.from_pretrained("./summary_generation_led_4")
|
7 |
+
tokenizer = LEDTokenizer.from_pretrained("./summary_generation_led_4")
|
8 |
+
|
9 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
model = model.to(device)
|
11 |
+
|
12 |
+
# Define the function for generating summaries
|
13 |
+
def generate_summary(plot_synopsis):
|
14 |
+
inputs = tokenizer(plot_synopsis, max_length=3000, truncation=True, padding="max_length", return_tensors="pt")
|
15 |
+
inputs = inputs.to(device)
|
16 |
+
outputs = model.generate(inputs['input_ids'], max_length=315, min_length=20, length_penalty=2.0, num_beams=4, early_stopping=True)
|
17 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
+
return summary
|
19 |
+
|
20 |
+
# Create a Gradio interface
|
21 |
+
interface = gr.Interface(fn=generate_summary,
|
22 |
+
inputs=gr.Textbox(label="Plot Synopsis", lines=10, placeholder="Enter plot synopsis here..."),
|
23 |
+
outputs=gr.Textbox(label="Plot Summary"),
|
24 |
+
title="Plot Summary Generator",
|
25 |
+
description="This demo generates a plot summary based on a plot synopsis using a fine-tuned LED model.")
|
26 |
+
|
27 |
+
# Launch the interface
|
28 |
+
interface.launch()
|