Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import whisper
|
4 |
+
import spacy
|
5 |
+
from PIL import Image
|
6 |
+
from diffusers import StableDiffusionPipeline #stable model to be updated if used
|
7 |
+
import torch
|
8 |
+
import logging
|
9 |
+
import os
|
10 |
+
import io
|
11 |
+
|
12 |
+
# Disable WANDB logging and configure logging level
|
13 |
+
logging.disable(logging.WARNING)
|
14 |
+
os.environ["WANDB_DISABLED"] = "true"
|
15 |
+
|
16 |
+
# Load models
|
17 |
+
whisper_model = whisper.load_model("base")
|
18 |
+
spacy.prefer_gpu()
|
19 |
+
spacy_nlp = spacy.load("en_core_web_sm")
|
20 |
+
|
21 |
+
#Initialize the model
|
22 |
+
stable_diffusion_pipeline = StableDiffusionPipeline.from_pretrained(
|
23 |
+
"CompVis/stable-diffusion-v1-2",
|
24 |
+
torch_dtype=torch.float16
|
25 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
def extract_keyframes(video_path, frame_interval=30, num_frames=5):
|
30 |
+
try:
|
31 |
+
cap = cv2.VideoCapture(video_path)
|
32 |
+
frames = []
|
33 |
+
success, frame = cap.read()
|
34 |
+
count = 0
|
35 |
+
while success and count < num_frames:
|
36 |
+
if count % frame_interval == 0:
|
37 |
+
frames.append(frame)
|
38 |
+
success, frame = cap.read()
|
39 |
+
count += 1
|
40 |
+
cap.release()
|
41 |
+
return frames
|
42 |
+
except Exception as e:
|
43 |
+
logging.error("Error extracting keyframes:", exc_info=e)
|
44 |
+
return None
|
45 |
+
def test_extract_keyframes():
|
46 |
+
video_path = "video.mp4"
|
47 |
+
frames = extract_keyframes(video_path)
|
48 |
+
|
49 |
+
assert frames is not None, "Keyframe extraction failed"
|
50 |
+
assert len(frames) > 0, "No keyframes extracted"
|
51 |
+
print("Keyframe extraction test passed")
|
52 |
+
|
53 |
+
test_extract_keyframes()
|
54 |
+
def transcribe_audio(video_path):
|
55 |
+
try:
|
56 |
+
result = whisper_model.transcribe(video_path)
|
57 |
+
return result['text']
|
58 |
+
except Exception as e:
|
59 |
+
logging.error("Error transcribing audio:", exc_info=e)
|
60 |
+
return None
|
61 |
+
def test_transcribe_audio():
|
62 |
+
video_path = "video.mp4"
|
63 |
+
transcription = transcribe_audio(video_path)
|
64 |
+
|
65 |
+
assert transcription is not None, "Transcription failed"
|
66 |
+
assert len(transcription) > 0, "Empty transcription"
|
67 |
+
print("Transcription test passed")
|
68 |
+
|
69 |
+
test_transcribe_audio()
|
70 |
+
def extract_keywords(text):
|
71 |
+
try:
|
72 |
+
if not text or not text.strip():
|
73 |
+
logging.warning("Empty or whitespace-only text: No keywords extracted")
|
74 |
+
return []
|
75 |
+
|
76 |
+
doc = spacy_nlp(text)
|
77 |
+
keywords = [chunk.text for chunk in doc.noun_chunks]
|
78 |
+
|
79 |
+
if not keywords:
|
80 |
+
logging.warning("No keywords extracted from the text")
|
81 |
+
|
82 |
+
return keywords
|
83 |
+
except Exception as e:
|
84 |
+
logging.error("Error extracting keywords:", exc_info=e)
|
85 |
+
return []
|
86 |
+
def test_extract_keywords():
|
87 |
+
text = "This is a test text for keyword extraction."
|
88 |
+
keywords = extract_keywords(text)
|
89 |
+
|
90 |
+
assert keywords is not None, "Keyword extraction failed"
|
91 |
+
assert len(keywords) > 0, "No keywords extracted"
|
92 |
+
print("Keyword extraction test passed")
|
93 |
+
|
94 |
+
test_extract_keywords()
|
95 |
+
def generate_thumbnails(frames, keywords, num_thumbnails=3):
|
96 |
+
try:
|
97 |
+
thumbnails = []
|
98 |
+
for frame in frames:
|
99 |
+
for _ in range(num_thumbnails):
|
100 |
+
prompt = "A visually striking image of " + ", ".join(keywords)
|
101 |
+
generated_image = stable_diffusion_pipeline(prompt, init_image=frame).images[0]
|
102 |
+
thumbnails.append(generated_image)
|
103 |
+
return thumbnails
|
104 |
+
except Exception as e:
|
105 |
+
logging.exception("Error generating thumbnails:", exc_info=e)
|
106 |
+
return None
|
107 |
+
def process_video(video):
|
108 |
+
try:
|
109 |
+
# Determine the video path based on the type of input
|
110 |
+
video_path = video.name if hasattr(video, 'name') else video
|
111 |
+
|
112 |
+
# Extract Keyframes
|
113 |
+
frames = extract_keyframes(video_path)
|
114 |
+
if frames is None:
|
115 |
+
return handle_error("Error extracting keyframes. Please check the video file.")
|
116 |
+
|
117 |
+
# Transcribe Audio
|
118 |
+
transcription = transcribe_audio(video_path)
|
119 |
+
if transcription is None:
|
120 |
+
return handle_error("Error transcribing audio. Please check the audio quality.")
|
121 |
+
|
122 |
+
# Extract Keywords
|
123 |
+
keywords = extract_keywords(transcription)
|
124 |
+
if not keywords:
|
125 |
+
return handle_error("Error extracting keywords. Please check the transcription.")
|
126 |
+
|
127 |
+
# Use the first keyword as title, the full transcription as text, and a generic text placement description
|
128 |
+
title = keywords[0] if keywords else "Thumbnail"
|
129 |
+
text = transcription
|
130 |
+
text_placement = "white letter center at bottom, modern and dynamic"
|
131 |
+
|
132 |
+
# Generate Thumbnails
|
133 |
+
thumbnail_images = generate_thumbnails(frames, keywords)
|
134 |
+
if not thumbnail_images:
|
135 |
+
return handle_error("Error generating thumbnails. Please try again later.")
|
136 |
+
|
137 |
+
return thumbnail_images, "Thumbnails generated successfully."
|
138 |
+
except Exception as e:
|
139 |
+
logging.exception("Unexpected error:", exc_info=e)
|
140 |
+
return handle_error("An unexpected error occurred. Please try again later.")
|
141 |
+
def handle_error(error_message):
|
142 |
+
# Return a placeholder image and the error message
|
143 |
+
placeholder = Image.new('RGB', (512, 512), color = (255, 0, 0)) # Placeholder image (red square)
|
144 |
+
return [placeholder], error_message
|
145 |
+
# Gradio interface
|
146 |
+
interface = gr.Interface(
|
147 |
+
fn=process_video,
|
148 |
+
inputs=gr.Video(label="Upload Video"),
|
149 |
+
outputs=[
|
150 |
+
gr.Gallery(label="Generated Thumbnails"),
|
151 |
+
gr.Textbox(label="Status", lines=2, placeholder="Status message will appear here...")
|
152 |
+
],
|
153 |
+
title="YouTube Thumbnail Generator",
|
154 |
+
description="Upload a video and generate multiple thumbnails using the video content and transcription.",
|
155 |
+
live=True
|
156 |
+
)
|
157 |
+
|
158 |
+
interface.launch()
|