File size: 1,249 Bytes
4f6dccc
 
750920d
49bd49b
4f6dccc
 
4d19546
750920d
876f820
49bd49b
6c46dd8
49bd49b
0f9fc8f
4f6dccc
 
 
 
 
 
750920d
 
4f6dccc
 
 
 
 
2cbb886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
import requests
from predict import image_inference,video_inference
import gdown



path = [['image.jpg'],]
video_path = [['video_.mp4'],]
# downloading vide example
url = "https://drive.google.com/file/d/1reSYnmarjdmDfR1QFK3NBHzJ5q_8Kyia/view?usp=share_link"
output = "video_.mp4"
#gdown.download(url, output,  quiet=False, fuzzy=True)
inputs_image = [
    gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
    gr.components.Image(type="numpy", label="Output Image"),
]
image_interface = gr.Interface(
    fn=image_inference,
    inputs=inputs_image,
    outputs=outputs_image,
    title="Arab Sign Language Detection app",
    examples=path,
    cache_examples=False,
).launch()
#inputs_video = [
#    gr.components.Video(type='filepath',label='Input Video'),
#]
#outputs_video = [
#    gr.components.Image(type='numpy',label='Output Video')
#]
#interface_video = gr.Interface(
#    fn=video_inference,
#    inputs=inputs_video,
#    outputs=outputs_video,
#    title="Arab Sign Language Detection app",
#    examples=video_path,
#     cache_examples=False,
#)
#
#gr.TabbedInterface(
#    [image_interface, interface_video],
#    tab_names=['Image inference', 'Video inference']
#).queue().launch()