Spaces:
Runtime error
Runtime error
File size: 1,249 Bytes
4f6dccc 750920d 49bd49b 4f6dccc 4d19546 750920d 876f820 49bd49b 6c46dd8 49bd49b 0f9fc8f 4f6dccc 750920d 4f6dccc 2cbb886 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import requests
from predict import image_inference,video_inference
import gdown
path = [['image.jpg'],]
video_path = [['video_.mp4'],]
# downloading vide example
url = "https://drive.google.com/file/d/1reSYnmarjdmDfR1QFK3NBHzJ5q_8Kyia/view?usp=share_link"
output = "video_.mp4"
#gdown.download(url, output, quiet=False, fuzzy=True)
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(type="numpy", label="Output Image"),
]
image_interface = gr.Interface(
fn=image_inference,
inputs=inputs_image,
outputs=outputs_image,
title="Arab Sign Language Detection app",
examples=path,
cache_examples=False,
).launch()
#inputs_video = [
# gr.components.Video(type='filepath',label='Input Video'),
#]
#outputs_video = [
# gr.components.Image(type='numpy',label='Output Video')
#]
#interface_video = gr.Interface(
# fn=video_inference,
# inputs=inputs_video,
# outputs=outputs_video,
# title="Arab Sign Language Detection app",
# examples=video_path,
# cache_examples=False,
#)
#
#gr.TabbedInterface(
# [image_interface, interface_video],
# tab_names=['Image inference', 'Video inference']
#).queue().launch() |