import gradio as gr import cv2 import requests from ultralytics import YOLO model = YOLO('best.pt') path = [['image.jpg'],] classes = ['ain', 'al', 'aleff','bb','dal','dha','dhad','fa','gaaf','ghain','ha','haa','jeem','kaaf','khaa','la','laam', 'meem','nun','ra','saad','seen','sheen','ta','taa','thaa','thal','toot','waw','ya','yaa','zay'] TargetMapper = dict(zip(range(32),classes)) def show_preds_image(image_path): print(image_path) image = cv2.imread(image_path) outputs = model.predict(source=image_path) print(outputs) print(outputs[0]) results = outputs[0].cpu().numpy() #for i, det in enumerate(results.boxes.xyxy): #cls = TargetMapper[results.boxes.cls[0]] print(results.boxes) print(results[0].boxes) det = results.boxes.xyxy[0] #print(det) #print(cls) cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) cv2.putText(image, cls, (int(det[0]), int(det[1])-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #image = cv2.imwrite('output.jpg', show_preds_image(path)) inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Arab Sign Language Detection app", examples=path, cache_examples=False, ).launch()