|
import time
|
|
import spaces
|
|
import torch
|
|
|
|
import gradio as gr
|
|
import yt_dlp as youtube_dl
|
|
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
|
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
|
import tempfile
|
|
import os
|
|
|
|
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
|
BATCH_SIZE = 8
|
|
FILE_LIMIT_MB = 1000
|
|
YT_LENGTH_LIMIT_S = 3600
|
|
|
|
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
|
pipe = pipeline(
|
|
task="automatic-speech-recognition",
|
|
model=MODEL_NAME,
|
|
chunk_length_s=30,
|
|
device=device,
|
|
)
|
|
|
|
model_name_translate = "Helsinki-NLP/opus-mt-en-ar"
|
|
tokenizer_translation = MarianTokenizer.from_pretrained(model_name_translate)
|
|
model_translate = MarianMTModel.from_pretrained(model_name_translate)
|
|
|
|
@spaces.GPU
|
|
def translate(sentence):
|
|
batch = tokenizer_translation([sentence], return_tensors="pt")
|
|
generated_ids = model_translate.generate(batch["input_ids"])
|
|
text = tokenizer_translation.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
return text
|
|
|
|
@spaces.GPU
|
|
def transcribe(inputs, task):
|
|
if inputs is None:
|
|
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
|
|
|
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
|
text = translate(text)
|
|
return text
|
|
|
|
|
|
def _return_yt_html_embed(yt_url):
|
|
video_id = yt_url.split("?v=")[-1]
|
|
HTML_str = (
|
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
|
" </center>"
|
|
)
|
|
return HTML_str
|
|
|
|
def download_yt_audio(yt_url, filename):
|
|
info_loader = youtube_dl.YoutubeDL()
|
|
|
|
try:
|
|
info = info_loader.extract_info(yt_url, download=False)
|
|
except youtube_dl.utils.DownloadError as err:
|
|
raise gr.Error(str(err))
|
|
|
|
file_length = info["duration_string"]
|
|
file_h_m_s = file_length.split(":")
|
|
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
|
|
|
if len(file_h_m_s) == 1:
|
|
file_h_m_s.insert(0, 0)
|
|
if len(file_h_m_s) == 2:
|
|
file_h_m_s.insert(0, 0)
|
|
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
|
|
|
if file_length_s > YT_LENGTH_LIMIT_S:
|
|
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
|
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
|
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
|
|
|
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
|
|
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
|
try:
|
|
ydl.download([yt_url])
|
|
except youtube_dl.utils.ExtractorError as err:
|
|
raise gr.Error(str(err))
|
|
|
|
@spaces.GPU
|
|
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
|
html_embed_str = _return_yt_html_embed(yt_url)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
filepath = os.path.join(tmpdirname, "video.mp4")
|
|
download_yt_audio(yt_url, filepath)
|
|
with open(filepath, "rb") as f:
|
|
inputs = f.read()
|
|
|
|
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
|
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
|
|
|
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
|
text = translate(text)
|
|
return html_embed_str, text
|
|
|
|
|
|
demo = gr.Blocks(theme=gr.themes.Ocean())
|
|
|
|
mf_transcribe = gr.Interface(
|
|
fn=transcribe,
|
|
inputs=[
|
|
gr.Audio(sources="microphone", type="filepath"),
|
|
],
|
|
outputs="text",
|
|
title="Real-Time Speech Translation From English to Arabic",
|
|
description=(
|
|
"Real Time Speech Translation Model from English to Arabic. This model uses the Whisper For speech to generation"
|
|
"then Helensiki model fine tuned on a translation dataset for translation"
|
|
),
|
|
allow_flagging="never",
|
|
)
|
|
|
|
file_transcribe = gr.Interface(
|
|
fn=transcribe,
|
|
inputs=[
|
|
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
|
],
|
|
outputs="text",
|
|
title="Real-Time Speech Translation From English to Arabic",
|
|
description=(
|
|
"Real Time Speech Translation Model from English to Arabic. This model uses the Whisper For speech to generation"
|
|
"then Helensiki model fine tuned on a translation dataset for translation"
|
|
),
|
|
allow_flagging="never",
|
|
)
|
|
|
|
|
|
with demo:
|
|
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
|
|
|
|
demo.queue().launch(ssr_mode=False)
|
|
|
|
|