File size: 1,682 Bytes
e6ac593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import cv2
import kornia.feature as KF
import kornia.geometry as KG
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision.io import decode_image

from ripe import vgg_hyper
from ripe.utils.utils import cv2_matches_from_kornia, resize_image, to_cv_kpts

dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = vgg_hyper().to(dev)
model.eval()

image1 = resize_image(decode_image("assets/all_souls_000013.jpg").float().to(dev) / 255.0)
image2 = resize_image(decode_image("assets/all_souls_000055.jpg").float().to(dev) / 255.0)

kpts_1, desc_1, score_1 = model.detectAndCompute(image1, threshold=0.5, top_k=2048)
kpts_2, desc_2, score_2 = model.detectAndCompute(image2, threshold=0.5, top_k=2048)

matcher = KF.DescriptorMatcher("mnn")  # threshold is not used with mnn
match_dists, match_idxs = matcher(desc_1, desc_2)

matched_pts_1 = kpts_1[match_idxs[:, 0]]
matched_pts_2 = kpts_2[match_idxs[:, 1]]

H, mask = KG.ransac.RANSAC(model_type="fundamental", inl_th=1.0)(matched_pts_1, matched_pts_2)
matchesMask = mask.int().ravel().tolist()

result_ransac = cv2.drawMatches(
    (image1.cpu().permute(1, 2, 0).numpy() * 255.0).astype(np.uint8),
    to_cv_kpts(kpts_1, score_1),
    (image2.cpu().permute(1, 2, 0).numpy() * 255.0).astype(np.uint8),
    to_cv_kpts(kpts_2, score_2),
    cv2_matches_from_kornia(match_dists, match_idxs),
    None,
    matchColor=(0, 255, 0),
    matchesMask=matchesMask,
    # matchesMask=None, # without RANSAC filtering
    singlePointColor=(0, 0, 255),
    flags=cv2.DrawMatchesFlags_DEFAULT,
)

plt.imshow(result_ransac)
plt.axis("off")
plt.tight_layout()

# plt.show()
plt.savefig("result_ransac.png")