Spaces:
Running
Running
File size: 4,186 Bytes
499e141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# -*- coding: utf-8 -*-
# @Author : xuelun
import os
import argparse
import numpy as np
from os.path import join
from datetime import datetime
angular_thresholds = ['5.0°']
dist_thresholds = ['0.1m']
intt = lambda x: list(map(int, x))
floatt = lambda x: list(map(float, x))
strr = lambda x: list(map(lambda x:f'{x:.18f}', x))
datasets = [
'GL3D',
'BlendedMVS',
'ETH3DI',
'ETH3DO',
'KITTI',
'RobotcarWeather',
'RobotcarSeason',
'RobotcarNight',
'Multi-FoV',
'SceneNetRGBD',
'ICL-NUIM',
'GTA-SfM',
]
def error_auc(errs0, errs1, thres, metric):
if isinstance(errs0, list): errs0 = np.array(errs0)
if isinstance(errs1, list): errs1 = np.array(errs1)
if any(np.isnan(errs0)): errs0[np.isnan(errs0)] = 180
if any(np.isnan(errs1)): errs1[np.isnan(errs1)] = 180
if any(np.isinf(errs0)): errs0[np.isinf(errs0)] = 180
if any(np.isinf(errs1)): errs1[np.isinf(errs1)] = 180
errors = np.max(np.stack([errs0, errs1]), axis=0)
errors = [0] + sorted(list(errors))
recall = list(np.linspace(0, 1, len(errors)))
aucs = []
for thr in thres:
thr = float(thr[:-1])
last_index = np.searchsorted(errors, thr)
y = recall[:last_index] + [recall[last_index-1]]
x = errors[:last_index] + [thr]
aucs.append(np.trapz(y, x) / thr)
return {f'{metric}@ {t}': auc for t, auc in zip(thres, aucs)}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dir', type=str, default='.')
parser.add_argument('--wid', type=str, required=True)
parser.add_argument('--version', type=str, default=None)
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--log', action='store_true')
parser.add_argument('--sceids', type=str, choices=datasets, nargs='+',
default=None, help=f'Test Datasets: {datasets}', )
opt = parser.parse_args()
dir = opt.dir
wid = opt.wid
version = opt.version
_data = \
{
x.rpartition('.txt')[0].split()[2]:x for x in
[
d for d in os.listdir(dir) if not os.path.isdir(os.path.join(dir, d))
] if wid == x.rpartition('.txt')[0].split()[1] and version is not None and version == x.rpartition('.txt')[0].split()[-1]
}
_data = {k:_data[k] for k in datasets if k in _data.keys()}
sceids = opt.sceids
sceids = sceids if sceids is not None else _data.keys()
results = {}
for sceid in sceids:
results[sceid] = {}
if not opt.verbose: print('{:^13} {}'.format(sceid, wid))
# read txt
with open(join(dir, _data[sceid]), 'r') as f:
data = f.readlines()
head = data[0].split()
content = [x.split() for x in data[1:]]
details = {k: [] for k in head[3:]}
stacks = []
for x in content:
ids = x[0]
if ids in stacks: continue
for k, v in zip(head[3:], x[3:]): details[k].append(v)
stacks.append(ids)
mAP = error_auc(floatt(details['R_errs']), floatt(details['t_errs']), angular_thresholds, 'auc')
for k, v in mAP.items(): results[sceid][k] = v
# print head
output = ''
num = 56+25*len(sceids)
output += '='*num
output += "\n"
output += '{:<25}'.format(datetime.now().strftime("%Y-%m-%d, %H:%M:%S"))
output += '{:<15} '.format('Model')
output += '{:<14} '.format('Metric')
for sceid in sceids: output += '{:<25} '.format(sceid)
output += "\n"
output += '-'*num
output += "\n"
for k in list(results.values())[0].keys():
output += '{:<25}'.format(datetime.now().strftime("%Y-%m-%d, %H:%M:%S")) if opt.log else '{:<25}'.format(' ')
output += '{:<15} '.format(wid)
output += '{:<14} '.format(k)
for sceid in sceids:
output += '{:<25} '.format(results[sceid][k])
output += "\n"
output += '='*num
output += "\n"
output += "\n"
if opt.verbose:
print(output)
if opt.log:
path = 'ANALYSIS RESULTS.txt'
with open(path, 'a') as file:
file.write(output)
|