Spaces:
Running
Running
File size: 21,527 Bytes
499e141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
# -*- coding: utf-8 -*-
# @Author : xuelun
import os
import cv2
import torch
import random
import numpy as np
import torch.nn.functional as F
from tqdm import tqdm
from os import listdir
from pathlib import Path
from functools import reduce
from datetime import datetime
from argparse import ArgumentParser
from os.path import join, isdir, exists
from datasets.dataset import RGBDDataset
from datasets.walk import cfg
from datasets.walk.utils import covision, intersected, read_images
from datasets.walk.utils import fast_make_matching_robust_fitting_figure
parse_mtd = lambda name: name.parent.stem.split()[1]
parse_skip = lambda name: int(str(name).split(os.sep)[-1].rpartition('SP')[-1].strip().rpartition(' ')[0])
parse_resize = lambda name: str(name).split(os.sep)[-2].rpartition('[R]')[-1].rpartition('[S]')[0].strip()
create_table = lambda x, y, w: dict(zip(np.round(x) + np.round(y) * w, list(range(len(x)))))
class WALKDataset(RGBDDataset):
def __init__(self,
root_dir, # data root dit
npz_root, # data info, like, overlap, image_path, depth_path
seq_name, # current sequence
mode, # train or val or test
max_resize, # max edge after resize
df, # general is 8 for ResNet w/ pre 3-layers
padding, # padding image for batch training
augment_fn, # augmentation function
max_samples, # max sample in current sequence
**kwargs):
super().__init__()
self.mode = mode
self.root_dir = root_dir
self.scene_path = join(root_dir, seq_name)
pseudo_labels = kwargs.get('PSEUDO_LABELS', None)
npz_paths = [join(npz_root, x) for x in pseudo_labels]
npz_paths = [x for x in npz_paths if exists(x)]
npz_names = [{d[:int(d.split()[-1])]: Path(path, d) for d in listdir(path) if isdir(join(path, d))} for path in npz_paths]
npz_paths = [name_dict[seq_name] for name_dict in npz_names if seq_name in name_dict.keys()]
self.propagating = kwargs.get('PROPAGATING', False)
if self.propagating and len(npz_paths) != 24:
print(f'{seq_name} has {len(npz_paths)} pseudo labels, but 24 are expected.')
exit(0)
self.scale = 1 / df
self.scene_id = seq_name
self.skips = sorted(list({parse_skip(name) for name in npz_paths}))
self.resizes = sorted(list({parse_resize(name) for name in npz_paths}))
self.methods = sorted(list({parse_mtd(name) for name in npz_paths}))[::-1]
self.min_final_matches = kwargs.get('MIN_FINAL_MATCHES', None)
self.min_filter_matches = kwargs.get('MIN_FILTER_MATCHES', None)
pproot = kwargs.get('PROPAGATE_ROOT', None)
ppid = ' '.join(self.methods + list(map(str, self.skips)) + self.resizes + [f'FM {self.min_filter_matches}', f'PM {self.min_final_matches}'])
self.pproot = join(pproot, ppid, seq_name)
if not self.propagating:
assert exists(self.pproot)
elif not exists(self.pproot):
os.makedirs(self.pproot, exist_ok=True)
image_root = kwargs.get('VIDEO_IMAGE_ROOT', None)
self.image_root = join(image_root, seq_name)
if not exists(self.image_root):
os.makedirs(self.image_root, exist_ok=True)
self.step = kwargs.get('STEP', None)
self.pix_thr = kwargs.get('PIX_THR', None)
self.fix_matches = kwargs.get('FIX_MATCHES', None)
source_root = kwargs.get('SOURCE_ROOT', None)
scap = cv2.VideoCapture(join(source_root, seq_name + '.mp4'))
self.pseudo_size = [int(scap.get(3)), int(scap.get(4))]
source_fps = int(scap.get(5))
video_path = join(root_dir, seq_name + '.mp4')
vcap = cv2.VideoCapture(video_path)
self.frame_size = [int(vcap.get(3)), int(vcap.get(4))]
if self.propagating:
nums = {skip: [] for skip in self.skips}
idxs = {skip: [] for skip in self.skips}
self.path = {skip: [] for skip in self.skips}
for npz_path in npz_paths:
skip = parse_skip(npz_path)
assert exists(npz_path / 'nums.npy')
with open(npz_path / 'nums.npy', 'rb') as f:
npz = np.load(f)
nums[skip].append(npz)
assert exists(npz_path / 'idxs.npy')
with open(npz_path / 'idxs.npy', 'rb') as f:
npz = np.load(f)
idxs[skip].append(npz)
self.path[skip].append(npz_path)
ids1 = reduce(intersected, [idxs[nums > self.min_filter_matches] for nums, idxs in zip(nums[self.skips[-1]], idxs[self.skips[-1]])])
continue1 = np.array([x in ids1[:, 0] for x in (ids1[:, 0] + self.skips[-1] * 1)])
ids2 = reduce(intersected, idxs[self.skips[-2]])
continue2 = np.array([x in ids2[:, 0] for x in ids1[:, 0]])
continue2 = continue2 & np.array([x in ids2[:, 0] for x in (ids1[:, 0] + self.skips[-2] * 1)])
ids3 = reduce(intersected, idxs[self.skips[-3]])
continue3 = np.array([x in ids3[:, 0] for x in ids1[:, 0]])
continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 1)])
continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 2)])
continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 3)])
continues = continue1 & continue2 & continue3
ids = ids1[continues]
pair_ids = np.array(list(zip(ids[:, 0], np.clip(ids[:, 0]+self.step*self.skips[-1], a_min=ids[0, 0], a_max=ids[-1, 1])))) if self.step > 0 else ids
pair_ids = pair_ids[(pair_ids[:, 1] - pair_ids[:, 0]) >= self.skips[-1]]
else:
pair_ids = np.array([tuple(map(int, x.split('.npy')[0].split('_'))) for x in os.listdir(self.pproot) if x.endswith('.npy')])
if (max_samples > 0) and (len(pair_ids) > max_samples):
random_state = random.getstate()
np_random_state = np.random.get_state()
random.seed(3407)
np.random.seed(3407)
pair_ids = pair_ids[sorted(np.random.randint(len(pair_ids), size=max_samples))]
random.setstate(random_state)
np.random.set_state(np_random_state)
# remove unvalid pairs from self.pproot/bad_pairs.txt
pair_ids = set(map(tuple, pair_ids.tolist()))
if self.propagating:
assert not exists(join(self.pproot, 'bad_pairs.txt'))
if exists(join(self.pproot, 'bad_pairs.txt')):
with open(join(self.pproot, 'bad_pairs.txt'), 'r') as f:
unvalid_pairs = set([tuple(map(int, line.split())) for line in f.readlines()])
self.unvalid_pairs_num = len(unvalid_pairs) if not self.propagating else 'N/A'
pair_ids = pair_ids - unvalid_pairs
self.valid_pairs_num = len(pair_ids) if not self.propagating else 'N/A'
self.pair_ids = list(map(list, pair_ids)) # List[List[int, int]]
# parameters for image resizing, padding and depthmap padding
if mode == 'train': assert max_resize is not None
self.df = df
self.max_resize = max_resize
self.padding = padding
# for training LoFTR
self.augment_fn = augment_fn if mode == 'train' else None
def __len__(self):
return len(self.pair_ids)
def propagate(self, idx0, idx1, skips):
"""
Args:
idx0: (int) index of the first frame
idx1: (int) index of the second frame
skips: (List)
Returns:
"""
skip = skips[-1] # 40
indices = [skip * (i + 1) + idx0 for i in range((idx1 - idx0) // skip)]
if (not indices) or (idx0 != indices[0]): indices = [idx0] + indices
if idx1 != indices[-1]: indices = indices + [idx1]
indices = list(zip(indices[:-1], indices[1:]))
# [(N', 4), (N'', 4), ...]
labels = []
ids = [idx0]
while indices:
pair = indices.pop(0) # (tuple)
if pair[0] == pair[1]: break
label = []
if (pair[-1] - pair[0]) == skip:
tmp = self.dump(skip, pair)
if len(tmp) > 0: label.append(tmp) # (ndarray) (N, 4)
if skips[:-1]:
_label_, id0, id1 = self.propagate(pair[0], pair[1], skips[:-1])
if (id0, id1) == pair: label.append(_label_) # (ndarray) (M, 4)
if label:
label = np.concatenate(label, axis=0) # (ndarray) (N+M, 4)
labels.append(label)
ids += [pair[1]]
if len(labels) > 1:
_labels_ = self.link(labels[0], labels[1])
if _labels_ is not None:
labels = [_labels_]
ids = [ids[0], ids[-1]]
else:
labels.pop(-1)
ids.pop(-1)
indices = [(pair[0], pair[1]-skips[0])]
if len(labels) == 1 and len(ids) == 2:
return labels[0], ids[0], ids[-1]
else:
return None, None, None
def link(self, label0, label1):
"""
Args:
label0: (ndarray) N x 4
label1: (ndarray) M x 4
Returns: (ndarray) (N', 4)
"""
# get keypoints in left, middle and right frame
left_t0 = label0[:, :2] # (N, 2)
mid_t0 = label0[:, 2:] # (N, 2)
mid_t1 = label1[:, :2] # (M, 2)
right_t1 = label1[:, 2:] # (M, 2)
mid0_table = create_table(mid_t0[:, 0], mid_t0[:, 1], self.pseudo_size[0])
mid1_table = create_table(mid_t1[:, 0], mid_t1[:, 1], self.pseudo_size[0])
keys = {*mid0_table} & {*mid1_table}
i = np.array([mid0_table[k] for k in keys])
j = np.array([mid1_table[k] for k in keys])
# remove repeat matches
ij = np.unique(np.vstack((i, j)), axis=1)
if ij.shape[1] < self.min_final_matches: return None
# get the new pseudo labels
pseudo_label = np.concatenate([left_t0[ij[0]], right_t1[ij[1]]], axis=1) # (N', 4)
return pseudo_label
def dump(self, skip, pair):
"""
Args:
skip:
pair:
Returns: pseudo_label (N, 4)
"""
labels = []
for path in self.path[skip]:
p = path / '{}.npy'.format(str(np.array(pair)))
if exists(p):
with open(p, 'rb') as f:
labels.append(np.load(f))
if len(labels) > 0: labels = np.concatenate(labels, axis=0).astype(np.float32) # (N, 4)
return labels
def __getitem__(self, idx):
idx0, idx1 = self.pair_ids[idx]
pppath = join(self.pproot, '{}_{}.npy'.format(idx0, idx1))
if self.propagating and exists(pppath):
return None
# check propagation
if not self.propagating:
assert exists(pppath), f'{pppath} does not exist'
if not exists(pppath):
pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips)
if idx1 - idx0 == self.skips[-1]:
pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips[:-1])
if idx1 - idx0 == self.skips[-2]:
pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips[:-2])
if pseudo_label is None:
_idx0_, _idx1_ = self.pair_ids[idx]
with open(join(self.pproot, 'bad_pairs.txt'), 'a') as f:
f.write('{} {}\n'.format(_idx0_, _idx1_))
return None
_, mask = cv2.findFundamentalMat(pseudo_label[:, :2], pseudo_label[:, 2:], cv2.USAC_MAGSAC, ransacReprojThreshold=1.0, confidence=0.999999, maxIters=1000)
mask = mask.ravel() > 0
pseudo_label = pseudo_label[mask]
if len(pseudo_label) < 64 or (idx1 - idx0) == self.skips[-3]:
_idx0_, _idx1_ = self.pair_ids[idx]
with open(join(self.pproot, 'bad_pairs.txt'), 'a') as f:
f.write('{} {}\n'.format(_idx0_, _idx1_))
return None
else:
with open(pppath, 'wb') as f:
np.save(f, np.concatenate((np.array([[idx0, idx1, idx0, idx1]]).astype(np.float32), pseudo_label), axis=0))
else:
with open(pppath, 'rb') as f:
pseudo_label = np.load(f)
idx0, idx1 = pseudo_label[0].astype(np.int64)[:2].tolist()
pseudo_label = pseudo_label[1:]
if self.propagating:
return None
pseudo_label *= (np.array(self.frame_size * 2) / np.array(self.pseudo_size * 2))[None]
# get image
img_path0 = join(self.image_root, '{}.png'.format(idx0))
color0 = cv2.imread(img_path0)
img_path1 = join(self.image_root, '{}.png'.format(idx1))
color1 = cv2.imread(img_path1)
width0, height0 = self.frame_size
width1, height1 = self.frame_size
left_upper_cornor = pseudo_label[:, :2].min(axis=0)
left_low_corner = pseudo_label[:, :2].max(axis=0)
left_corner = np.concatenate([left_upper_cornor, left_low_corner], axis=0)
right_upper_cornor = pseudo_label[:, 2:].min(axis=0)
right_low_corner = pseudo_label[:, 2:].max(axis=0)
right_corner = np.concatenate([right_upper_cornor, right_low_corner], axis=0)
# Prepare variables
image0, color0, scale0, rands0, offset0, hlip0, vflip0, resize0, mask0 = read_images(
None, self.max_resize, self.df, self.padding,
np.random.choice([self.augment_fn, None], p=[0.5, 0.5]),
aug_prob=1.0, is_left=True,
upper_cornor=left_corner,
read_size=self.frame_size, image=color0)
image1, color1, scale1, rands1, offset1, hlip1, vflip1, resize1, mask1 = read_images(
None, self.max_resize, self.df, self.padding,
np.random.choice([self.augment_fn, None], p=[0.5, 0.5]),
aug_prob=1.0, is_left=False,
upper_cornor=right_corner,
read_size=self.frame_size, image=color1)
# warp keypoints by scale, offset and hlip
pseudo_label = torch.tensor(pseudo_label, dtype=torch.float)
left = (pseudo_label[:, :2] / scale0[None] - offset0[None])
left[:, 0] = resize0[1] - 1 - left[:, 0] if hlip0 else left[:, 0]
left[:, 1] = resize0[0] - 1 - left[:, 1] if vflip0 else left[:, 1]
right = (pseudo_label[:, 2:] / scale1[None] - offset1[None])
right[:, 0] = resize1[1] - 1 - right[:, 0] if hlip1 else right[:, 0]
right[:, 1] = resize1[0] - 1 - right[:, 1] if vflip1 else right[:, 1]
mask = (left[:, 0] >= 0) & (left[:, 0]*self.scale <= (resize0[1]*self.scale - 1)) & \
(left[:, 1] >= 0) & (left[:, 1]*self.scale <= (resize0[0]*self.scale - 1)) & \
(right[:, 0] >= 0) & (right[:, 0]*self.scale <= (resize1[1]*self.scale - 1)) & \
(right[:, 1] >= 0) & (right[:, 1]*self.scale <= (resize1[0]*self.scale - 1))
left, right = left[mask], right[mask]
pseudo_label = torch.cat([left, right], dim=1)
pseudo_label = torch.unique(pseudo_label, dim=0)
fix_pseudo_label = torch.zeros(self.fix_matches, 4, dtype=pseudo_label.dtype)
fix_pseudo_label[:len(pseudo_label)] = pseudo_label
# read image size
imsize0 = torch.tensor([height0, width0], dtype=torch.long)
imsize1 = torch.tensor([height1, width1], dtype=torch.long)
resize0 = torch.tensor(resize0, dtype=torch.long)
resize1 = torch.tensor(resize1, dtype=torch.long)
data = {
# image 0
'image0': image0,
'color0': color0,
'imsize0': imsize0,
'offset0': offset0,
'resize0': resize0,
'depth0': torch.ones((1600, 1600), dtype=torch.float),
'hflip0': hlip0,
'vflip0': vflip0,
# image 1
'image1': image1,
'color1': color1,
'imsize1': imsize1,
'offset1': offset1,
'resize1': resize1,
'depth1': torch.ones((1600, 1600), dtype=torch.float),
'hflip1': hlip1,
'vflip1': vflip1,
# image transform
'pseudo_labels': fix_pseudo_label,
'gt': False,
'zs': True,
# image transform
'T_0to1': torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=torch.float),
'T_1to0': torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=torch.float),
'K0': torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=torch.float),
'K1': torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=torch.float),
# pair information
'scale0': scale0 / scale0,
'scale1': scale1 / scale1,
'rands0': rands0,
'rands1': rands1,
'dataset_name': 'WALK',
'scene_id': '{:30}'.format(self.scene_id[:min(30, len(self.scene_id)-1)]),
'pair_id': f'{idx0}-{idx1}',
'pair_names': ('{}.png'.format(idx0),
'{}.png'.format(idx1)),
'covisible0': covision(pseudo_label[:, :2], resize0).item(),
'covisible1': covision(pseudo_label[:, 2:], resize1).item(),
}
item = super(WALKDataset, self).__getitem__(idx)
item.update(data)
data = item
if mask0 is not None:
if self.scale:
# noinspection PyArgumentList
[ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(),
scale_factor=self.scale,
mode='nearest',
recompute_scale_factor=False)[0].bool()
data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1})
data.update({'mask0_i': mask0, 'mask1_i': mask1})
return data
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('seq_names', type=str, nargs='+')
args = parser.parse_args()
train_cfg = cfg.DATASET.TRAIN
base_input = {
'df': 8,
'mode': 'train',
'augment_fn': None,
'max_resize': [1280, 720],
'padding': cfg.DATASET.TRAIN.PADDING,
'max_samples': cfg.DATASET.TRAIN.MAX_SAMPLES,
'min_overlap_score': cfg.DATASET.TRAIN.MIN_OVERLAP_SCORE,
'max_overlap_score': cfg.DATASET.TRAIN.MAX_OVERLAP_SCORE
}
cfg_input = {
k: getattr(train_cfg, k)
for k in [
'DATA_ROOT', 'NPZ_ROOT', 'STEP', 'PIX_THR', 'FIX_MATCHES', 'SOURCE_ROOT',
'MAX_CANDIDATE_MATCHES', 'MIN_FINAL_MATCHES', 'MIN_FILTER_MATCHES',
'VIDEO_IMAGE_ROOT', 'PROPAGATE_ROOT', 'PSEUDO_LABELS'
]
}
if os.path.isfile(args.seq_names[0]):
with open(args.seq_names[0], 'r') as f:
seq_names = [line.strip() for line in f.readlines()]
else:
seq_names = args.seq_names
for seq_name in seq_names:
input_ = {
**base_input,
**cfg_input,
'root_dir': cfg_input['DATA_ROOT'],
'npz_root': cfg_input['NPZ_ROOT'],
'seq_name': seq_name
}
dataset = WALKDataset(**input_)
random.seed(3407)
np.random.seed(3407)
samples = list(range(len(dataset)))
num = 10
samples = random.sample(samples, num)
for idx_ in tqdm(samples[:num], ncols=80, bar_format="{l_bar}{bar:3}{r_bar}", total=num,
desc=f'[ {seq_name[:min(10, len(seq_name)-1)]:<10} ] [ {dataset.valid_pairs_num:<5} / {dataset.valid_pairs_num+dataset.unvalid_pairs_num:<5} ]',):
data_ = dataset[idx_]
if data_ is None: continue
pseudo_labels_ = data_['pseudo_labels']
mask_ = pseudo_labels_.sum(dim=1) > 0
pseudo_label_ = pseudo_labels_[mask_].cpu().numpy()
data_['mkpts0_f'] = pseudo_label_[:, :2]
data_['mkpts1_f'] = pseudo_label_[:, 2:]
data_['hw0_i'] = data_['image0'].shape[-2:]
data_['hw1_i'] = data_['image1'].shape[-2:]
data_['image0'] = data_['image0'][None]
data_['image1'] = data_['image1'][None]
data_['color0'] = data_['color0'][None]
data_['color1'] = data_['color1'][None]
idx0_, idx1_ = data_['pair_id'].split('-')
idx0_, idx1_ = map(int, [idx0_, idx1_])
out = fast_make_matching_robust_fitting_figure(data_, transpose=True)
save_dir = Path('dump/walk') / seq_name
if not exists(save_dir): save_dir.mkdir(parents=True, exist_ok=True)
cv2.imwrite(join(save_dir, '{:8d} [{}] {:8d} {:3d}.png'.format(
idx0_,
datetime.utcnow().strftime('%Y-%m-%d %H-%M-%S %f')[:-3],
idx1_,
idx1_ - idx0_
)), cv2.cvtColor(out, cv2.COLOR_RGB2BGR))
|