File size: 21,527 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# -*- coding: utf-8 -*-
# @Author  : xuelun

import os
import cv2
import torch
import random
import numpy as np
import torch.nn.functional as F

from tqdm import tqdm
from os import listdir
from pathlib import Path
from functools import reduce
from datetime import datetime
from argparse import ArgumentParser
from os.path import join, isdir, exists

from datasets.dataset import RGBDDataset

from datasets.walk import cfg
from datasets.walk.utils import covision, intersected, read_images
from datasets.walk.utils import fast_make_matching_robust_fitting_figure

parse_mtd = lambda name: name.parent.stem.split()[1]
parse_skip = lambda name: int(str(name).split(os.sep)[-1].rpartition('SP')[-1].strip().rpartition(' ')[0])
parse_resize = lambda name: str(name).split(os.sep)[-2].rpartition('[R]')[-1].rpartition('[S]')[0].strip()

create_table = lambda x, y, w: dict(zip(np.round(x) + np.round(y) * w, list(range(len(x)))))


class WALKDataset(RGBDDataset):
    def __init__(self,
                 root_dir,          # data root dit
                 npz_root,          # data info, like, overlap, image_path, depth_path
                 seq_name,          # current sequence
                 mode,              # train or val or test
                 max_resize,        # max edge after resize
                 df,                # general is 8 for ResNet w/ pre 3-layers
                 padding,           # padding image for batch training
                 augment_fn,        # augmentation function
                 max_samples,       # max sample in current sequence
                 **kwargs):
        super().__init__()

        self.mode = mode
        self.root_dir = root_dir
        self.scene_path = join(root_dir, seq_name)

        pseudo_labels = kwargs.get('PSEUDO_LABELS', None)
        npz_paths = [join(npz_root, x) for x in pseudo_labels]
        npz_paths = [x for x in npz_paths if exists(x)]
        npz_names = [{d[:int(d.split()[-1])]: Path(path, d) for d in listdir(path) if isdir(join(path, d))} for path in npz_paths]
        npz_paths = [name_dict[seq_name] for name_dict in npz_names if seq_name in name_dict.keys()]

        self.propagating = kwargs.get('PROPAGATING', False)

        if self.propagating and len(npz_paths) != 24:
            print(f'{seq_name} has {len(npz_paths)} pseudo labels, but 24 are expected.')
            exit(0)

        self.scale = 1 / df
        self.scene_id = seq_name
        self.skips = sorted(list({parse_skip(name) for name in npz_paths}))
        self.resizes = sorted(list({parse_resize(name) for name in npz_paths}))
        self.methods = sorted(list({parse_mtd(name) for name in npz_paths}))[::-1]

        self.min_final_matches = kwargs.get('MIN_FINAL_MATCHES', None)
        self.min_filter_matches = kwargs.get('MIN_FILTER_MATCHES', None)

        pproot = kwargs.get('PROPAGATE_ROOT', None)
        ppid = ' '.join(self.methods + list(map(str, self.skips)) + self.resizes + [f'FM {self.min_filter_matches}', f'PM {self.min_final_matches}'])
        self.pproot = join(pproot, ppid, seq_name)

        if not self.propagating:
            assert exists(self.pproot)
        elif not exists(self.pproot):
            os.makedirs(self.pproot, exist_ok=True)

        image_root = kwargs.get('VIDEO_IMAGE_ROOT', None)
        self.image_root = join(image_root, seq_name)
        if not exists(self.image_root):
            os.makedirs(self.image_root, exist_ok=True)

        self.step = kwargs.get('STEP', None)
        self.pix_thr = kwargs.get('PIX_THR', None)
        self.fix_matches = kwargs.get('FIX_MATCHES', None)

        source_root = kwargs.get('SOURCE_ROOT', None)

        scap = cv2.VideoCapture(join(source_root, seq_name + '.mp4'))
        self.pseudo_size = [int(scap.get(3)), int(scap.get(4))]
        source_fps = int(scap.get(5))

        video_path = join(root_dir, seq_name + '.mp4')
        vcap = cv2.VideoCapture(video_path)
        self.frame_size = [int(vcap.get(3)), int(vcap.get(4))]

        if self.propagating:
            nums = {skip: [] for skip in self.skips}
            idxs = {skip: [] for skip in self.skips}
            self.path = {skip: [] for skip in self.skips}
            for npz_path in npz_paths:
                skip = parse_skip(npz_path)
                assert exists(npz_path / 'nums.npy')
                with open(npz_path / 'nums.npy', 'rb') as f:
                    npz = np.load(f)
                    nums[skip].append(npz)
                assert exists(npz_path / 'idxs.npy')
                with open(npz_path / 'idxs.npy', 'rb') as f:
                    npz = np.load(f)
                    idxs[skip].append(npz)
                self.path[skip].append(npz_path)

            ids1 = reduce(intersected, [idxs[nums > self.min_filter_matches] for nums, idxs in zip(nums[self.skips[-1]], idxs[self.skips[-1]])])
            continue1 = np.array([x in ids1[:, 0] for x in (ids1[:, 0] + self.skips[-1] * 1)])
            ids2 = reduce(intersected, idxs[self.skips[-2]])
            continue2 = np.array([x in ids2[:, 0] for x in ids1[:, 0]])
            continue2 = continue2 & np.array([x in ids2[:, 0] for x in (ids1[:, 0] + self.skips[-2] * 1)])
            ids3 = reduce(intersected, idxs[self.skips[-3]])
            continue3 = np.array([x in ids3[:, 0] for x in ids1[:, 0]])
            continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 1)])
            continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 2)])
            continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 3)])
            continues = continue1 & continue2 & continue3
            ids = ids1[continues]
            pair_ids = np.array(list(zip(ids[:, 0], np.clip(ids[:, 0]+self.step*self.skips[-1], a_min=ids[0, 0], a_max=ids[-1, 1])))) if self.step > 0 else ids
            pair_ids = pair_ids[(pair_ids[:, 1] - pair_ids[:, 0]) >= self.skips[-1]]
        else:
            pair_ids = np.array([tuple(map(int, x.split('.npy')[0].split('_'))) for x in os.listdir(self.pproot) if x.endswith('.npy')])

        if (max_samples > 0) and (len(pair_ids) > max_samples):
            random_state = random.getstate()
            np_random_state = np.random.get_state()
            random.seed(3407)
            np.random.seed(3407)
            pair_ids = pair_ids[sorted(np.random.randint(len(pair_ids), size=max_samples))]
            random.setstate(random_state)
            np.random.set_state(np_random_state)

        # remove unvalid pairs from self.pproot/bad_pairs.txt
        pair_ids = set(map(tuple, pair_ids.tolist()))

        if self.propagating:
            assert not exists(join(self.pproot, 'bad_pairs.txt'))

        if exists(join(self.pproot, 'bad_pairs.txt')):
            with open(join(self.pproot, 'bad_pairs.txt'), 'r') as f:
                unvalid_pairs = set([tuple(map(int, line.split())) for line in f.readlines()])
                self.unvalid_pairs_num = len(unvalid_pairs) if not self.propagating else 'N/A'
                pair_ids = pair_ids - unvalid_pairs

        self.valid_pairs_num = len(pair_ids) if not self.propagating else 'N/A'

        self.pair_ids = list(map(list, pair_ids))  # List[List[int, int]]

        # parameters for image resizing, padding and depthmap padding
        if mode == 'train': assert max_resize is not None

        self.df = df
        self.max_resize = max_resize
        self.padding = padding

        # for training LoFTR
        self.augment_fn = augment_fn if mode == 'train' else None

    def __len__(self):
        return len(self.pair_ids)

    def propagate(self, idx0, idx1, skips):
        """
        Args:
            idx0: (int) index of the first frame
            idx1: (int) index of the second frame
            skips: (List)

        Returns:
        """
        skip = skips[-1]  # 40
        indices = [skip * (i + 1) + idx0 for i in range((idx1 - idx0) // skip)]
        if (not indices) or (idx0 != indices[0]): indices = [idx0] + indices
        if idx1 != indices[-1]: indices = indices + [idx1]
        indices = list(zip(indices[:-1], indices[1:]))

        # [(N', 4), (N'', 4), ...]
        labels = []
        ids = [idx0]
        while indices:
            pair = indices.pop(0)  # (tuple)
            if pair[0] == pair[1]: break
            label = []
            if (pair[-1] - pair[0]) == skip:
                tmp = self.dump(skip, pair)
                if len(tmp) > 0: label.append(tmp)  # (ndarray) (N, 4)
            if skips[:-1]:
                _label_, id0, id1 = self.propagate(pair[0], pair[1], skips[:-1])
                if (id0, id1) == pair: label.append(_label_)  # (ndarray) (M, 4)
            if label:
                label = np.concatenate(label, axis=0)  # (ndarray) (N+M, 4)
                labels.append(label)
                ids += [pair[1]]
            if len(labels) > 1:
                _labels_ = self.link(labels[0], labels[1])
                if _labels_ is not None:
                    labels = [_labels_]
                    ids = [ids[0], ids[-1]]
                else:
                    labels.pop(-1)
                    ids.pop(-1)
                    indices = [(pair[0], pair[1]-skips[0])]

        if len(labels) == 1 and len(ids) == 2:
            return labels[0], ids[0], ids[-1]
        else:
            return None, None, None

    def link(self, label0, label1):
        """
        Args:
            label0: (ndarray) N x 4
            label1: (ndarray) M x 4

        Returns: (ndarray) (N', 4)
        """
        # get keypoints in left, middle and right frame
        left_t0 = label0[:, :2]  # (N, 2)
        mid_t0 = label0[:, 2:]  # (N, 2)
        mid_t1 = label1[:, :2]  # (M, 2)
        right_t1 = label1[:, 2:]  # (M, 2)

        mid0_table = create_table(mid_t0[:, 0], mid_t0[:, 1], self.pseudo_size[0])
        mid1_table = create_table(mid_t1[:, 0], mid_t1[:, 1], self.pseudo_size[0])

        keys = {*mid0_table} & {*mid1_table}

        i = np.array([mid0_table[k] for k in keys])
        j = np.array([mid1_table[k] for k in keys])

        # remove repeat matches
        ij = np.unique(np.vstack((i, j)), axis=1)

        if ij.shape[1] < self.min_final_matches: return None

        # get the new pseudo labels
        pseudo_label = np.concatenate([left_t0[ij[0]], right_t1[ij[1]]], axis=1)  # (N', 4)

        return pseudo_label

    def dump(self, skip, pair):
        """
        Args:
            skip:
            pair:

        Returns: pseudo_label (N, 4)
        """
        labels = []
        for path in self.path[skip]:
            p = path / '{}.npy'.format(str(np.array(pair)))
            if exists(p):
                with open(p, 'rb') as f:
                    labels.append(np.load(f))

        if len(labels) > 0: labels = np.concatenate(labels, axis=0).astype(np.float32)  # (N, 4)

        return labels

    def __getitem__(self, idx):
        idx0, idx1 = self.pair_ids[idx]

        pppath = join(self.pproot, '{}_{}.npy'.format(idx0, idx1))

        if self.propagating and exists(pppath):
            return None

        # check propagation
        if not self.propagating:
            assert exists(pppath), f'{pppath} does not exist'

        if not exists(pppath):
            pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips)

            if idx1 - idx0 == self.skips[-1]:
                pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips[:-1])

            if idx1 - idx0 == self.skips[-2]:
                pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips[:-2])

            if pseudo_label is None:
                _idx0_, _idx1_ = self.pair_ids[idx]
                with open(join(self.pproot, 'bad_pairs.txt'), 'a') as f:
                    f.write('{} {}\n'.format(_idx0_, _idx1_))
                return None

            _, mask = cv2.findFundamentalMat(pseudo_label[:, :2], pseudo_label[:, 2:], cv2.USAC_MAGSAC, ransacReprojThreshold=1.0, confidence=0.999999, maxIters=1000)
            mask = mask.ravel() > 0
            pseudo_label = pseudo_label[mask]

            if len(pseudo_label) < 64 or (idx1 - idx0) == self.skips[-3]:
                _idx0_, _idx1_ = self.pair_ids[idx]
                with open(join(self.pproot, 'bad_pairs.txt'), 'a') as f:
                    f.write('{} {}\n'.format(_idx0_, _idx1_))
                return None
            else:
                with open(pppath, 'wb') as f:
                    np.save(f, np.concatenate((np.array([[idx0, idx1, idx0, idx1]]).astype(np.float32), pseudo_label), axis=0))
        else:
            with open(pppath, 'rb') as f:
                pseudo_label = np.load(f)
                idx0, idx1 = pseudo_label[0].astype(np.int64)[:2].tolist()
                pseudo_label = pseudo_label[1:]

        if self.propagating:
            return None

        pseudo_label *= (np.array(self.frame_size * 2) / np.array(self.pseudo_size * 2))[None]

        # get image
        img_path0 = join(self.image_root, '{}.png'.format(idx0))
        color0 = cv2.imread(img_path0)

        img_path1 = join(self.image_root, '{}.png'.format(idx1))
        color1 = cv2.imread(img_path1)

        width0, height0 = self.frame_size
        width1, height1 = self.frame_size

        left_upper_cornor = pseudo_label[:, :2].min(axis=0)
        left_low_corner = pseudo_label[:, :2].max(axis=0)
        left_corner = np.concatenate([left_upper_cornor, left_low_corner], axis=0)
        right_upper_cornor = pseudo_label[:, 2:].min(axis=0)
        right_low_corner = pseudo_label[:, 2:].max(axis=0)
        right_corner = np.concatenate([right_upper_cornor, right_low_corner], axis=0)

        # Prepare variables
        image0, color0, scale0, rands0, offset0, hlip0, vflip0, resize0, mask0 = read_images(
            None, self.max_resize, self.df, self.padding,
            np.random.choice([self.augment_fn, None], p=[0.5, 0.5]),
            aug_prob=1.0, is_left=True,
            upper_cornor=left_corner,
            read_size=self.frame_size, image=color0)
        image1, color1, scale1, rands1, offset1, hlip1, vflip1, resize1, mask1 = read_images(
            None, self.max_resize, self.df, self.padding,
            np.random.choice([self.augment_fn, None], p=[0.5, 0.5]),
            aug_prob=1.0, is_left=False,
            upper_cornor=right_corner,
            read_size=self.frame_size, image=color1)

        # warp keypoints by scale, offset and hlip
        pseudo_label = torch.tensor(pseudo_label, dtype=torch.float)
        left = (pseudo_label[:, :2] / scale0[None] - offset0[None])
        left[:, 0] = resize0[1] - 1 - left[:, 0] if hlip0 else left[:, 0]
        left[:, 1] = resize0[0] - 1 - left[:, 1] if vflip0 else left[:, 1]
        right = (pseudo_label[:, 2:] / scale1[None] - offset1[None])
        right[:, 0] = resize1[1] - 1 - right[:, 0] if hlip1 else right[:, 0]
        right[:, 1] = resize1[0] - 1 - right[:, 1] if vflip1 else right[:, 1]

        mask = (left[:, 0] >= 0) & (left[:, 0]*self.scale <= (resize0[1]*self.scale - 1)) & \
               (left[:, 1] >= 0) & (left[:, 1]*self.scale <= (resize0[0]*self.scale - 1)) & \
               (right[:, 0] >= 0) & (right[:, 0]*self.scale <= (resize1[1]*self.scale - 1)) & \
               (right[:, 1] >= 0) & (right[:, 1]*self.scale <= (resize1[0]*self.scale - 1))
        left, right = left[mask], right[mask]

        pseudo_label = torch.cat([left, right], dim=1)
        pseudo_label = torch.unique(pseudo_label, dim=0)

        fix_pseudo_label = torch.zeros(self.fix_matches, 4, dtype=pseudo_label.dtype)
        fix_pseudo_label[:len(pseudo_label)] = pseudo_label

        # read image size
        imsize0 = torch.tensor([height0, width0], dtype=torch.long)
        imsize1 = torch.tensor([height1, width1], dtype=torch.long)
        resize0 = torch.tensor(resize0, dtype=torch.long)
        resize1 = torch.tensor(resize1, dtype=torch.long)

        data = {
            # image 0
            'image0': image0,
            'color0': color0,
            'imsize0': imsize0,
            'offset0': offset0,
            'resize0': resize0,
            'depth0': torch.ones((1600, 1600), dtype=torch.float),
            'hflip0': hlip0,
            'vflip0': vflip0,

            # image 1
            'image1': image1,
            'color1': color1,
            'imsize1': imsize1,
            'offset1': offset1,
            'resize1': resize1,
            'depth1': torch.ones((1600, 1600), dtype=torch.float),
            'hflip1': hlip1,
            'vflip1': vflip1,

            # image transform
            'pseudo_labels': fix_pseudo_label,
            'gt': False,
            'zs': True,

            # image transform
            'T_0to1': torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=torch.float),
            'T_1to0': torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=torch.float),
            'K0': torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=torch.float),
            'K1': torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=torch.float),
            # pair information
            'scale0': scale0 / scale0,
            'scale1': scale1 / scale1,
            'rands0': rands0,
            'rands1': rands1,
            'dataset_name': 'WALK',
            'scene_id': '{:30}'.format(self.scene_id[:min(30, len(self.scene_id)-1)]),
            'pair_id': f'{idx0}-{idx1}',
            'pair_names': ('{}.png'.format(idx0),
                           '{}.png'.format(idx1)),
            'covisible0': covision(pseudo_label[:, :2], resize0).item(),
            'covisible1': covision(pseudo_label[:, 2:], resize1).item(),
        }

        item = super(WALKDataset, self).__getitem__(idx)
        item.update(data)
        data = item

        if mask0 is not None:
            if self.scale:
                # noinspection PyArgumentList
                [ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(),
                                                       scale_factor=self.scale,
                                                       mode='nearest',
                                                       recompute_scale_factor=False)[0].bool()
                data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1})
            data.update({'mask0_i': mask0, 'mask1_i': mask1})

        return data


if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('seq_names', type=str, nargs='+')
    args = parser.parse_args()

    train_cfg = cfg.DATASET.TRAIN

    base_input = {
        'df': 8,
        'mode': 'train',
        'augment_fn': None,
        'max_resize': [1280, 720],
        'padding': cfg.DATASET.TRAIN.PADDING,
        'max_samples': cfg.DATASET.TRAIN.MAX_SAMPLES,
        'min_overlap_score': cfg.DATASET.TRAIN.MIN_OVERLAP_SCORE,
        'max_overlap_score': cfg.DATASET.TRAIN.MAX_OVERLAP_SCORE
    }

    cfg_input = {
        k: getattr(train_cfg, k)
        for k in [
            'DATA_ROOT', 'NPZ_ROOT', 'STEP', 'PIX_THR', 'FIX_MATCHES', 'SOURCE_ROOT',
            'MAX_CANDIDATE_MATCHES', 'MIN_FINAL_MATCHES', 'MIN_FILTER_MATCHES',
            'VIDEO_IMAGE_ROOT', 'PROPAGATE_ROOT', 'PSEUDO_LABELS'
        ]
    }

    if os.path.isfile(args.seq_names[0]):
        with open(args.seq_names[0], 'r') as f:
            seq_names = [line.strip() for line in f.readlines()]
    else:
        seq_names = args.seq_names

    for seq_name in seq_names:
        input_ = {
            **base_input,
            **cfg_input,
            'root_dir': cfg_input['DATA_ROOT'],
            'npz_root': cfg_input['NPZ_ROOT'],
            'seq_name': seq_name
        }
        
        dataset = WALKDataset(**input_)

        random.seed(3407)
        np.random.seed(3407)

        samples = list(range(len(dataset)))
        num = 10
        samples = random.sample(samples, num)
        for idx_ in tqdm(samples[:num], ncols=80, bar_format="{l_bar}{bar:3}{r_bar}", total=num,
                         desc=f'[ {seq_name[:min(10, len(seq_name)-1)]:<10} ] [ {dataset.valid_pairs_num:<5} / {dataset.valid_pairs_num+dataset.unvalid_pairs_num:<5} ]',):
            data_ = dataset[idx_]

            if data_ is None: continue

            pseudo_labels_ = data_['pseudo_labels']
            mask_ = pseudo_labels_.sum(dim=1) > 0
            pseudo_label_ = pseudo_labels_[mask_].cpu().numpy()
            data_['mkpts0_f'] = pseudo_label_[:, :2]
            data_['mkpts1_f'] = pseudo_label_[:, 2:]
            data_['hw0_i'] = data_['image0'].shape[-2:]
            data_['hw1_i'] = data_['image1'].shape[-2:]
            data_['image0'] = data_['image0'][None]
            data_['image1'] = data_['image1'][None]
            data_['color0'] = data_['color0'][None]
            data_['color1'] = data_['color1'][None]
            idx0_, idx1_ = data_['pair_id'].split('-')
            idx0_, idx1_ = map(int, [idx0_, idx1_])

            out = fast_make_matching_robust_fitting_figure(data_, transpose=True)
            save_dir = Path('dump/walk') / seq_name
            if not exists(save_dir): save_dir.mkdir(parents=True, exist_ok=True)
            cv2.imwrite(join(save_dir, '{:8d} [{}] {:8d} {:3d}.png'.format(
                idx0_,
                datetime.utcnow().strftime('%Y-%m-%d %H-%M-%S %f')[:-3],
                idx1_,
                idx1_ - idx0_
            )), cv2.cvtColor(out, cv2.COLOR_RGB2BGR))