Spaces:
Running
Running
File size: 5,437 Bytes
499e141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# -*- coding: utf-8 -*-
# @Author : xuelun
import os
import torch
import warnings
import numpy as np
from tqdm import tqdm
from os.path import join
from pathlib import Path
from argparse import ArgumentParser
from hloc import pairs_from_exhaustive
from hloc import extract_features, match_features, match_dense, reconstruction
from hloc.utils import segment
from hloc.utils.io import read_image
from hloc.match_dense import ImagePairDataset
from networks.lightglue.superpoint import SuperPoint
from networks.lightglue.models.matchers.lightglue import LightGlue
from networks.mit_semseg.models import ModelBuilder, SegmentationModule
def segmentation(images, segment_root, matcher_conf):
# initial device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# initial segmentation mode
net_encoder = ModelBuilder.build_encoder(
arch='resnet50dilated',
fc_dim=2048,
weights='weights/encoder_epoch_20.pth')
net_decoder = ModelBuilder.build_decoder(
arch='ppm_deepsup',
fc_dim=2048,
num_class=150,
weights='weights/decoder_epoch_20.pth',
use_softmax=True)
crit = torch.nn.NLLLoss(ignore_index=-1)
segmentation_module = SegmentationModule(net_encoder, net_decoder, crit)
segmentation_module = segmentation_module.to(device).eval()
# initial data reader
dataset = ImagePairDataset(None, matcher_conf["preprocessing"], None)
# Segment images
image_list = sorted(os.listdir(images))
with torch.no_grad():
for img in tqdm(image_list):
segment_path = join(segment_root, '{}.npy'.format(img[:-4]))
if not os.path.exists(segment_path):
rgb = read_image(images / img, dataset.conf.grayscale)
mask = segment(rgb, 1920, device, segmentation_module)
np.save(segment_path, mask)
def main(scene_name, version):
# Setup
images = Path('inputs') / scene_name / 'images'
outputs = Path('outputs') / scene_name / version
outputs.mkdir(parents=True, exist_ok=True)
os.environ['GIMRECONSTRUCTION'] = str(outputs)
segment_root = Path('outputs') / scene_name / 'segment'
segment_root.mkdir(parents=True, exist_ok=True)
sfm_dir = outputs / 'sparse'
mvs_path = outputs / 'dense'
database_path = sfm_dir / 'database.db'
image_pairs = outputs / 'pairs-near.txt'
feature_conf = matcher_conf = None
if version == 'gim_dkm':
feature_conf = None
matcher_conf = match_dense.confs[version]
elif version == 'gim_lightglue':
feature_conf = extract_features.confs['gim_superpoint']
matcher_conf = match_features.confs[version]
# Find image pairs via pair-wise image
exhaustive_pairs = pairs_from_exhaustive.main(image_pairs, image_list=images)
segmentation(images, segment_root, matcher_conf)
# Extract and match local features
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
if version == 'gim_dkm':
feature_path, match_path = match_dense.main(matcher_conf, image_pairs,
images, outputs)
elif version == 'gim_lightglue':
checkpoints_path = join('weights', 'gim_lightglue_100h.ckpt')
detector = SuperPoint({
'max_num_keypoints': 2048,
'force_num_keypoints': True,
'detection_threshold': 0.0,
'nms_radius': 3,
'trainable': False,
})
state_dict = torch.load(checkpoints_path, map_location='cpu')
if 'state_dict' in state_dict.keys(): state_dict = state_dict['state_dict']
for k in list(state_dict.keys()):
if k.startswith('model.'):
state_dict.pop(k)
if k.startswith('superpoint.'):
state_dict[k.replace('superpoint.', '', 1)] = state_dict.pop(k)
detector.load_state_dict(state_dict)
model = LightGlue({
'filter_threshold': 0.1,
'flash': False,
'checkpointed': True,
})
state_dict = torch.load(checkpoints_path, map_location='cpu')
if 'state_dict' in state_dict.keys(): state_dict = state_dict['state_dict']
for k in list(state_dict.keys()):
if k.startswith('superpoint.'):
state_dict.pop(k)
if k.startswith('model.'):
state_dict[k.replace('model.', '', 1)] = state_dict.pop(k)
model.load_state_dict(state_dict)
feature_path = extract_features.main(feature_conf, images, outputs,
model=detector)
match_path = match_features.main(matcher_conf, image_pairs,
feature_conf['output'], outputs,
model=model)
# sparse reconstruction
reconstruction.main(sfm_dir, images, image_pairs, feature_path, match_path)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--scene_name', type=str)
parser.add_argument('--version', type=str, choices={'gim_dkm', 'gim_lightglue'},
default='gim_dkm')
args = parser.parse_args()
main(args.scene_name, args.version)
|