File size: 3,326 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import torch
import numpy as np

import torchvision.transforms as transforms
from functools import lru_cache

@lru_cache(maxsize=None)
def meshgrid(B, H, W, dtype, device, normalized=False):
    """

    Create mesh-grid given batch size, height and width dimensions. From https://github.com/TRI-ML/KP2D.



    Parameters

    ----------

    B: int

        Batch size

    H: int

        Grid Height

    W: int

        Batch size

    dtype: torch.dtype

        Tensor dtype

    device: str

        Tensor device

    normalized: bool

        Normalized image coordinates or integer-grid.



    Returns

    -------

    xs: torch.Tensor

        Batched mesh-grid x-coordinates (BHW).

    ys: torch.Tensor

        Batched mesh-grid y-coordinates (BHW).

    """
    if normalized:
        xs = torch.linspace(-1, 1, W, device=device, dtype=dtype)
        ys = torch.linspace(-1, 1, H, device=device, dtype=dtype)
    else:
        xs = torch.linspace(0, W-1, W, device=device, dtype=dtype)
        ys = torch.linspace(0, H-1, H, device=device, dtype=dtype)
    ys, xs = torch.meshgrid([ys, xs])
    return xs.repeat([B, 1, 1]), ys.repeat([B, 1, 1])


@lru_cache(maxsize=None)
def image_grid(B, H, W, dtype, device, ones=True, normalized=False):
    """

    Create an image mesh grid with shape B3HW given image shape BHW. From https://github.com/TRI-ML/KP2D.



    Parameters

    ----------

    B: int

        Batch size

    H: int

        Grid Height

    W: int

        Batch size

    dtype: str

        Tensor dtype

    device: str

        Tensor device

    ones : bool

        Use (x, y, 1) coordinates

    normalized: bool

        Normalized image coordinates or integer-grid.



    Returns

    -------

    grid: torch.Tensor

        Mesh-grid for the corresponding image shape (B3HW)

    """
    xs, ys = meshgrid(B, H, W, dtype, device, normalized=normalized)
    coords = [xs, ys]
    if ones:
        coords.append(torch.ones_like(xs))  # BHW
    grid = torch.stack(coords, dim=1)  # B3HW
    return grid

def to_tensor_sample(sample, tensor_type='torch.FloatTensor'):
    """

    Casts the keys of sample to tensors. From https://github.com/TRI-ML/KP2D.



    Parameters

    ----------

    sample : dict

        Input sample

    tensor_type : str

        Type of tensor we are casting to



    Returns

    -------

    sample : dict

        Sample with keys cast as tensors

    """
    transform = transforms.ToTensor()
    sample['image'] = transform(sample['image']).type(tensor_type)
    return sample

def warp_keypoints(keypoints, H):
    """Warp keypoints given a homography



    Parameters

    ----------

    keypoints: numpy.ndarray (N,2)

        Keypoint vector.

    H: numpy.ndarray (3,3)

        Homography.



    Returns

    -------

    warped_keypoints: numpy.ndarray (N,2)

        Warped keypoints vector.

    """
    num_points = keypoints.shape[0]
    homogeneous_points = np.concatenate([keypoints, np.ones((num_points, 1))], axis=1)
    warped_points = np.dot(homogeneous_points, np.transpose(H))
    return warped_points[:, :2] / warped_points[:, 2:]

def prepare_dirs(config):
    for path in [config.ckpt_dir]:
        if not os.path.exists(path):
            os.makedirs(path)