File size: 7,034 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pathlib import Path
import typing
import logging

import numpy as np
from transforms3d.quaternions import qinverse, rotate_vector, qmult

VARIANTS_ANGLE_SIN = 'sin'
VARIANTS_ANGLE_COS = 'cos'


def convert_world2cam_to_cam2world(q, t):
    qinv = qinverse(q)
    tinv = -rotate_vector(t, qinv)
    return qinv, tinv


def load_poses(file: typing.IO, load_confidence: bool = False):
    """Load poses from text file and converts them to cam2world convention (t is the camera center in world coordinates)

    The text file encodes world2cam poses with the format:
        imgpath qw qx qy qz tx ty tz [confidence]
    where qw qx qy qz is the quaternion encoding rotation,
    and tx ty tz is the translation vector,
    and confidence is a float encoding confidence, for estimated poses
    """

    expected_parts = 9 if load_confidence else 8

    poses = dict()
    for line_number, line in enumerate(file.readlines()):
        parts = tuple(line.strip().split(' '))

        # if 'tensor' in parts[-1]:
        #     print('ERROR: confidence is a tensor')
        #     parts = list(parts)
        #     parts[-1] = parts[-1].split('[')[-1].split(']')[0]
        if len(parts) != expected_parts:
            logging.warning(
                f'Invalid number of fields in file {file.name} line {line_number}.'
                f' Expected {expected_parts}, received {len(parts)}. Ignoring line.')
            continue

        try:
            name = parts[0]
            if '#' in name:
                logging.info(f'Ignoring comment line in {file.name} line {line_number}')
                continue
            frame_num = int(name[-9:-4])
        except ValueError:
            logging.warning(
                f'Invalid frame number in file {file.name} line {line_number}.'
                f' Expected formatting "seq1/frame_00000.jpg". Ignoring line.')
            continue

        try:
            parts_float = tuple(map(float, parts[1:]))
            if any(np.isnan(v) or np.isinf(v) for v in parts_float):
                raise ValueError()
            qw, qx, qy, qz, tx, ty, tz = parts_float[:7]
            confidence = parts_float[7] if load_confidence else None
        except ValueError:
            logging.warning(
                f'Error parsing pose in file {file.name} line {line_number}. Ignoring line.')
            continue

        q = np.array((qw, qx, qy, qz), dtype=np.float64)
        t = np.array((tx, ty, tz), dtype=np.float64)

        if np.isclose(np.linalg.norm(q), 0):
            logging.warning(
                f'Error parsing pose in file {file.name} line {line_number}. '
                'Quaternion must have non-zero norm. Ignoring line.')
            continue

        q, t = convert_world2cam_to_cam2world(q, t)
        poses[frame_num] = (q, t, confidence)
    return poses


def subsample_poses(poses: dict, subsample: int = 1):
    return {k: v for i, (k, v) in enumerate(poses.items()) if i % subsample == 0}


def load_K(file_path: Path):
    K = dict()
    with file_path.open('r', encoding='utf-8') as f:
        for line in f.readlines():
            if '#' in line:
                continue
            line = line.strip().split(' ')

            frame_num = int(line[0][-9:-4])
            fx, fy, cx, cy, W, H = map(float, line[1:])
            K[frame_num] = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
    return K, W, H


def quat_angle_error(label, pred, variant=VARIANTS_ANGLE_SIN) -> np.ndarray:
    assert label.shape == (4,)
    assert pred.shape == (4,)
    assert variant in (VARIANTS_ANGLE_SIN, VARIANTS_ANGLE_COS), \
        f"Need variant to be in ({VARIANTS_ANGLE_SIN}, {VARIANTS_ANGLE_COS})"

    if len(label.shape) == 1:
        label = np.expand_dims(label, axis=0)
    if len(label.shape) != 2 or label.shape[0] != 1 or label.shape[1] != 4:
        raise RuntimeError(f"Unexpected shape of label: {label.shape}, expected: (1, 4)")

    if len(pred.shape) == 1:
        pred = np.expand_dims(pred, axis=0)
    if len(pred.shape) != 2 or pred.shape[0] != 1 or pred.shape[1] != 4:
        raise RuntimeError(f"Unexpected shape of pred: {pred.shape}, expected: (1, 4)")

    label = label.astype(np.float64)
    pred = pred.astype(np.float64)

    q1 = pred / np.linalg.norm(pred, axis=1, keepdims=True)
    q2 = label / np.linalg.norm(label, axis=1, keepdims=True)
    if variant == VARIANTS_ANGLE_COS:
        d = np.abs(np.sum(np.multiply(q1, q2), axis=1, keepdims=True))
        d = np.clip(d, a_min=-1, a_max=1)
        angle = 2. * np.degrees(np.arccos(d))
    elif variant == VARIANTS_ANGLE_SIN:
        if q1.shape[0] != 1 or q2.shape[0] != 1:
            raise NotImplementedError(f"Multiple angles is todo")
        # https://www.researchgate.net/post/How_do_I_calculate_the_smallest_angle_between_two_quaternions/5d6ed4a84f3a3e1ed3656616/citation/download
        sine = qmult(q1[0], qinverse(q2[0]))  # note: takes first element in 2D array
        # 114.59 = 2. * 180. / pi
        angle = np.arcsin(np.linalg.norm(sine[1:], keepdims=True)) * 114.59155902616465
        angle = np.expand_dims(angle, axis=0)

    return angle.astype(np.float64)


def precision_recall(inliers, tp, failures):
    """
    Computes Precision/Recall plot for a set of poses given inliers (confidence) and wether the
    estimated pose error (whatever it may be) is within a threshold.
    Each point in the plot is obtained by choosing a threshold for inliers (i.e. inlier_thr).
    Recall measures how many images have inliers >= inlier_thr
    Precision measures how many images that have inliers >= inlier_thr have 
    estimated pose error <= pose_threshold (measured by counting tps)
    Where pose_threshold is (trans_thr[m], rot_thr[deg])

    Inputs:
        - inliers [N]
        - terr [N]
        - rerr [N]
        - failures (int)
        - pose_threshold (tuple float)
    Output
        - precision [N]
        - recall [N]
        - average_precision (scalar)
    """

    assert len(inliers) == len(tp), 'unequal shapes'

    # sort by inliers (descending order)
    inliers = np.array(inliers)
    sort_idx = np.argsort(inliers)[::-1]
    inliers = inliers[sort_idx]
    tp = np.array(tp).reshape(-1)[sort_idx]

    # get idxs where inliers change (avoid tied up values)
    distinct_value_indices = np.where(np.diff(inliers))[0]
    threshold_idxs = np.r_[distinct_value_indices, inliers.size - 1]

    # compute prec/recall
    N = inliers.shape[0]
    rec = np.arange(N, dtype=np.float32) + 1
    cum_tp = np.cumsum(tp)
    prec = cum_tp[threshold_idxs] / rec[threshold_idxs]
    rec = rec[threshold_idxs] / (float(N) + float(failures))

    # invert order and ensures (prec=1, rec=0) point
    last_ind = rec.searchsorted(rec[-1])
    sl = slice(last_ind, None, -1)
    prec = np.r_[prec[sl], 1]
    rec = np.r_[rec[sl], 0]

    # compute average precision (AUC) as the weighted average of precisions
    average_precision = np.abs(np.sum(np.diff(rec) * np.array(prec)[:-1]))

    return prec, rec, average_precision