Spaces:
Running
Running
File size: 5,587 Bytes
1b369eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import resnet
from typing import Optional, Callable
from ..utils.misc import NestedTensor
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels,
gate: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None):
super().__init__()
if gate is None:
self.gate = nn.ReLU(inplace=False)
else:
self.gate = gate
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv1 = resnet.conv3x3(in_channels, out_channels)
self.bn1 = norm_layer(out_channels)
self.conv2 = resnet.conv3x3(out_channels, out_channels)
self.bn2 = norm_layer(out_channels)
def forward(self, x):
x = self.gate(self.bn1(self.conv1(x))) # B x in_channels x H x W
x = self.gate(self.bn2(self.conv2(x))) # B x out_channels x H x W
return x
class ResBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
gate: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(ResBlock, self).__init__()
if gate is None:
self.gate = nn.ReLU(inplace=False)
else:
self.gate = gate
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('ResBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in ResBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = resnet.conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.conv2 = resnet.conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: torch.Tensor) -> torch.Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.gate(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
out = self.gate(out)
return out
class RDD_detector(nn.Module):
def __init__(self, block_dims, hidden_dim=128):
super().__init__()
self.gate = nn.ReLU(inplace=False)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool4 = nn.MaxPool2d(kernel_size=4, stride=4)
self.block1 = ConvBlock(3, block_dims[0], self.gate, nn.BatchNorm2d)
self.block2 = ResBlock(inplanes=block_dims[0], planes=block_dims[1], stride=1,
downsample=nn.Conv2d(block_dims[0], block_dims[1], 1),
gate=self.gate,
norm_layer=nn.BatchNorm2d)
self.block3 = ResBlock(inplanes=block_dims[1], planes=block_dims[2], stride=1,
downsample=nn.Conv2d(block_dims[1], block_dims[2], 1),
gate=self.gate,
norm_layer=nn.BatchNorm2d)
self.block4 = ResBlock(inplanes=block_dims[2], planes=block_dims[3], stride=1,
downsample=nn.Conv2d(block_dims[2], block_dims[3], 1),
gate=self.gate,
norm_layer=nn.BatchNorm2d)
self.conv1 = resnet.conv1x1(block_dims[0], hidden_dim // 4)
self.conv2 = resnet.conv1x1(block_dims[1], hidden_dim // 4)
self.conv3 = resnet.conv1x1(block_dims[2], hidden_dim // 4)
self.conv4 = resnet.conv1x1(block_dims[3], hidden_dim // 4)
self.upsample2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True)
self.upsample8 = nn.Upsample(scale_factor=8, mode='bilinear', align_corners=True)
self.upsample32 = nn.Upsample(scale_factor=32, mode='bilinear', align_corners=True)
self.convhead2 = nn.Sequential(
resnet.conv1x1(hidden_dim, 1),
nn.Sigmoid()
)
def forward(self, samples: NestedTensor):
x1 = self.block1(samples.tensors)
x2 = self.pool2(x1)
x2 = self.block2(x2) # B x c2 x H/2 x W/2
x3 = self.pool4(x2)
x3 = self.block3(x3) # B x c3 x H/8 x W/8
x4 = self.pool4(x3)
x4 = self.block4(x4)
x1 = self.gate(self.conv1(x1)) # B x dim//4 x H x W
x2 = self.gate(self.conv2(x2)) # B x dim//4 x H//2 x W//2
x3 = self.gate(self.conv3(x3)) # B x dim//4 x H//8 x W//8
x4 = self.gate(self.conv4(x4)) # B x dim//4 x H//32 x W//32
x2_up = self.upsample2(x2)
x3_up = self.upsample8(x3)
x4_up = self.upsample32(x4)
x1234 = torch.cat([x1, x2_up, x3_up, x4_up], dim=1)
scoremap = self.convhead2(x1234)
return scoremap
def build_detector(config):
block_dims = config['block_dims']
return RDD_detector(block_dims, block_dims[-1]) |