File size: 5,587 Bytes
1b369eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import resnet
from typing import Optional, Callable
from ..utils.misc import NestedTensor

class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels,
                 gate: Optional[Callable[..., nn.Module]] = None,
                 norm_layer: Optional[Callable[..., nn.Module]] = None):
        super().__init__()
        if gate is None:
            self.gate = nn.ReLU(inplace=False)
        else:
            self.gate = gate
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self.conv1 = resnet.conv3x3(in_channels, out_channels)
        self.bn1 = norm_layer(out_channels)
        self.conv2 = resnet.conv3x3(out_channels, out_channels)
        self.bn2 = norm_layer(out_channels)

    def forward(self, x):
        x = self.gate(self.bn1(self.conv1(x)))  # B x in_channels x H x W
        x = self.gate(self.bn2(self.conv2(x)))  # B x out_channels x H x W
        return x

class ResBlock(nn.Module):
    expansion: int = 1

    def __init__(
            self,
            inplanes: int,
            planes: int,
            stride: int = 1,
            downsample: Optional[nn.Module] = None,
            groups: int = 1,
            base_width: int = 64,
            dilation: int = 1,
            gate: Optional[Callable[..., nn.Module]] = None,
            norm_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:
        super(ResBlock, self).__init__()
        if gate is None:
            self.gate = nn.ReLU(inplace=False)
        else:
            self.gate = gate
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError('ResBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in ResBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = resnet.conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.conv2 = resnet.conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.gate(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out = out + identity
        out = self.gate(out)

        return out
    
class RDD_detector(nn.Module):
    def __init__(self, block_dims, hidden_dim=128):
        super().__init__()
        self.gate = nn.ReLU(inplace=False)
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.pool4 = nn.MaxPool2d(kernel_size=4, stride=4)
        self.block1 = ConvBlock(3, block_dims[0], self.gate, nn.BatchNorm2d)
        self.block2 = ResBlock(inplanes=block_dims[0], planes=block_dims[1], stride=1,
                            downsample=nn.Conv2d(block_dims[0], block_dims[1], 1),
                            gate=self.gate,
                            norm_layer=nn.BatchNorm2d)
        self.block3 = ResBlock(inplanes=block_dims[1], planes=block_dims[2], stride=1,
                            downsample=nn.Conv2d(block_dims[1], block_dims[2], 1),
                            gate=self.gate,
                            norm_layer=nn.BatchNorm2d)
        self.block4 = ResBlock(inplanes=block_dims[2], planes=block_dims[3], stride=1,
                            downsample=nn.Conv2d(block_dims[2], block_dims[3], 1),
                            gate=self.gate,
                            norm_layer=nn.BatchNorm2d)

        self.conv1 = resnet.conv1x1(block_dims[0], hidden_dim // 4)
        self.conv2 = resnet.conv1x1(block_dims[1], hidden_dim // 4)
        self.conv3 = resnet.conv1x1(block_dims[2], hidden_dim // 4)
        self.conv4 = resnet.conv1x1(block_dims[3], hidden_dim // 4)
        
        self.upsample2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True)
        self.upsample8 = nn.Upsample(scale_factor=8, mode='bilinear', align_corners=True)
        self.upsample32 = nn.Upsample(scale_factor=32, mode='bilinear', align_corners=True)

        self.convhead2 = nn.Sequential(
                                resnet.conv1x1(hidden_dim, 1),
                                nn.Sigmoid()
        )

    def forward(self, samples: NestedTensor):
        x1 = self.block1(samples.tensors)
        x2 = self.pool2(x1)
        x2 = self.block2(x2)  # B x c2 x H/2 x W/2
        x3 = self.pool4(x2)
        x3 = self.block3(x3)  # B x c3 x H/8 x W/8
        x4 = self.pool4(x3)
        x4 = self.block4(x4)
        
        x1 = self.gate(self.conv1(x1))  # B x dim//4 x H x W
        x2 = self.gate(self.conv2(x2))  # B x dim//4 x H//2 x W//2
        x3 = self.gate(self.conv3(x3))  # B x dim//4 x H//8 x W//8
        x4 = self.gate(self.conv4(x4))  # B x dim//4 x H//32 x W//32
        
        x2_up = self.upsample2(x2)
        x3_up = self.upsample8(x3)
        x4_up = self.upsample32(x4)
        
        x1234 = torch.cat([x1, x2_up, x3_up, x4_up], dim=1)
        scoremap = self.convhead2(x1234)
        
        return scoremap
    
def build_detector(config):
    block_dims = config['block_dims']
    return RDD_detector(block_dims, block_dims[-1])