File size: 10,444 Bytes
1b369eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# ALIKE: https://github.com/Shiaoming/ALIKE
import torch
from torch import nn
import numpy as np
import torch.nn.functional as F


# coordinates system
#  ------------------------------>  [ x: range=-1.0~1.0; w: range=0~W ]
#  | -----------------------------
#  | |                           |
#  | |                           |
#  | |                           |
#  | |         image             |
#  | |                           |
#  | |                           |
#  | |                           |
#  | |---------------------------|
#  v
# [ y: range=-1.0~1.0; h: range=0~H ]

def simple_nms(scores, nms_radius: int):
    """ Fast Non-maximum suppression to remove nearby points """
    assert (nms_radius >= 0)

    def max_pool(x):
        return torch.nn.functional.max_pool2d(
            x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius)

    zeros = torch.zeros_like(scores)
    max_mask = scores == max_pool(scores)

    for _ in range(2):
        supp_mask = max_pool(max_mask.float()) > 0
        supp_scores = torch.where(supp_mask, zeros, scores)
        new_max_mask = supp_scores == max_pool(supp_scores)
        max_mask = max_mask | (new_max_mask & (~supp_mask))
    return torch.where(max_mask, scores, zeros)


"""

	"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."

	https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/

"""

import torch
import torch.nn as nn
import torch.nn.functional as F

class InterpolateSparse2d(nn.Module):
    """ Efficiently interpolate tensor at given sparse 2D positions. """ 
    def __init__(self, mode = 'bicubic', align_corners = False): 
        super().__init__()
        self.mode = mode
        self.align_corners = align_corners

    def normgrid(self, x, H, W):
        """ Normalize coords to [-1,1]. """
        return 2. * (x/(torch.tensor([W-1, H-1], device = x.device, dtype = x.dtype))) - 1.

    def forward(self, x, pos, H, W):
        """

        Input

            x: [B, C, H, W] feature tensor

            pos: [B, N, 2] tensor of positions

            H, W: int, original resolution of input 2d positions -- used in normalization [-1,1]



        Returns

            [B, N, C] sampled channels at 2d positions

        """
        grid = self.normgrid(pos, H, W).unsqueeze(-2).to(x.dtype)
        x = F.grid_sample(x, grid, mode = self.mode , align_corners = False)
        return x.permute(0,2,3,1).squeeze(-2)


class SoftDetect(nn.Module):
    def __init__(self, radius=2, top_k=0, scores_th=0.2, n_limit=20000):
        """

        Args:

            radius: soft detection radius, kernel size is (2 * radius + 1)

            top_k: top_k > 0: return top k keypoints

            scores_th: top_k <= 0 threshold mode:  scores_th > 0: return keypoints with scores>scores_th

                                                   else: return keypoints with scores > scores.mean()

            n_limit: max number of keypoint in threshold mode

        """
        super().__init__()
        self.radius = radius
        self.top_k = top_k
        self.scores_th = scores_th
        self.n_limit = n_limit
        self.kernel_size = 2 * self.radius + 1
        self.temperature = 0.1  # tuned temperature
        self.unfold = nn.Unfold(kernel_size=self.kernel_size, padding=self.radius)
        self.sample_descriptor = InterpolateSparse2d('bicubic')
        # local xy grid
        x = torch.linspace(-self.radius, self.radius, self.kernel_size)
        # (kernel_size*kernel_size) x 2 : (w,h)
        self.hw_grid = torch.stack(torch.meshgrid([x, x])).view(2, -1).t()[:, [1, 0]]

    def detect_keypoints(self, scores_map, normalized_coordinates=True):
        b, c, h, w = scores_map.shape
        scores_nograd = scores_map.detach()
        
        # nms_scores = simple_nms(scores_nograd, self.radius)
        nms_scores = simple_nms(scores_nograd, 2)

        # remove border
        nms_scores[:, :, :self.radius + 1, :] = 0
        nms_scores[:, :, :, :self.radius + 1] = 0
        nms_scores[:, :, h - self.radius:, :] = 0
        nms_scores[:, :, :, w - self.radius:] = 0

        # detect keypoints without grad
        if self.top_k > 0:
            topk = torch.topk(nms_scores.view(b, -1), self.top_k)
            indices_keypoints = topk.indices  # B x top_k
        else:
            if self.scores_th > 0:
                masks = nms_scores > self.scores_th
                if masks.sum() == 0:
                    th = scores_nograd.reshape(b, -1).mean(dim=1)  # th = self.scores_th
                    masks = nms_scores > th.reshape(b, 1, 1, 1)
            else:
                th = scores_nograd.reshape(b, -1).mean(dim=1)  # th = self.scores_th
                masks = nms_scores > th.reshape(b, 1, 1, 1)
            masks = masks.reshape(b, -1)

            indices_keypoints = []  # list, B x (any size)
            scores_view = scores_nograd.reshape(b, -1)
            for mask, scores in zip(masks, scores_view):
                indices = mask.nonzero(as_tuple=False)[:, 0]
                if len(indices) > self.n_limit:
                    kpts_sc = scores[indices]
                    sort_idx = kpts_sc.sort(descending=True)[1]
                    sel_idx = sort_idx[:self.n_limit]
                    indices = indices[sel_idx]
                indices_keypoints.append(indices)

        # detect soft keypoints with grad backpropagation
        patches = self.unfold(scores_map)  # B x (kernel**2) x (H*W)
        self.hw_grid = self.hw_grid.to(patches)  # to device
        keypoints = []
        scoredispersitys = []
        kptscores = []
        for b_idx in range(b):
            patch = patches[b_idx].t()  # (H*W) x (kernel**2)
            indices_kpt = indices_keypoints[b_idx]  # one dimension vector, say its size is M
            patch_scores = patch[indices_kpt]  # M x (kernel**2)

            # max is detached to prevent undesired backprop loops in the graph
            max_v = patch_scores.max(dim=1).values.detach()[:, None]
            x_exp = ((patch_scores - max_v) / self.temperature).exp()  # M * (kernel**2), in [0, 1]

            # \frac{ \sum{(i,j) \times \exp(x/T)} }{ \sum{\exp(x/T)} }
            xy_residual = x_exp @ self.hw_grid / x_exp.sum(dim=1)[:, None]  # Soft-argmax, Mx2

            hw_grid_dist2 = torch.norm((self.hw_grid[None, :, :] - xy_residual[:, None, :]) / self.radius,
                                       dim=-1) ** 2
            scoredispersity = (x_exp * hw_grid_dist2).sum(dim=1) / x_exp.sum(dim=1)

            # compute result keypoints
            keypoints_xy_nms = torch.stack([indices_kpt % w, indices_kpt // w], dim=1)  # Mx2
            keypoints_xy = keypoints_xy_nms + xy_residual
            if normalized_coordinates:
                keypoints_xy = keypoints_xy / keypoints_xy.new_tensor([w - 1, h - 1]) * 2 - 1  # (w,h) -> (-1~1,-1~1)

            kptscore = torch.nn.functional.grid_sample(scores_map[b_idx].unsqueeze(0), keypoints_xy.view(1, 1, -1, 2),
                                                       mode='bilinear', align_corners=True)[0, 0, 0, :]  # CxN

            keypoints.append(keypoints_xy)
            scoredispersitys.append(scoredispersity)
            kptscores.append(kptscore)

        return keypoints, scoredispersitys, kptscores

    def forward(self, scores_map, normalized_coordinates=True):
        """

        :param scores_map:  Bx1xHxW

        :return: kpts: list[Nx2,...]; kptscores: list[N,....] normalised position: -1.0 ~ 1.0

        """
        B, _, H, W = scores_map.shape

        keypoints, scoredispersitys, kptscores = self.detect_keypoints(scores_map,
                                                                       normalized_coordinates)
        
        # keypoints: B M 2
        # scoredispersitys:
        return keypoints, kptscores, scoredispersitys
    
import torch
import torch.nn as nn

class Detect(nn.Module):
    def __init__(self, stride=4, top_k=0, scores_th=0, n_limit=20000):
        super().__init__()
        self.stride = stride
        self.top_k = top_k
        self.scores_th = scores_th
        self.n_limit = n_limit

    def forward(self, scores, coords, w, h):
        """

        scores: B x N x 1 (keypoint confidence scores)

        coords: B x N x 2 (offsets within stride x stride window)

        w, h: Image dimensions

        """
        b, n, _ = scores.shape
        kpts_list = []
        scores_list = []

        for b_idx in range(b):
            score = scores[b_idx].squeeze(-1)  # Shape: (N,)
            coord = coords[b_idx]  # Shape: (N, 2)

            # Apply score thresholding
            if self.scores_th >= 0:
                valid = score > self.scores_th
            else:
                valid = score > score.mean()

            valid_indices = valid.nonzero(as_tuple=True)[0]  # Get valid indices
            if valid_indices.numel() == 0:
                kpts_list.append(torch.empty((0, 2), device=scores.device))
                scores_list.append(torch.empty((0,), device=scores.device))
                continue

            # Compute keypoint locations in original image space
            i_ids = valid_indices  # Indices where keypoints exist
            kpts = torch.stack([i_ids % w, i_ids // w], dim=1).to(torch.float) * self.stride  # Grid position
            kpts += coord[i_ids] * self.stride  # Apply offset

            # Normalize keypoints to [-1, 1] range
            kpts = (kpts / torch.tensor([w - 1, h - 1], device=kpts.device, dtype=kpts.dtype)) * 2 - 1

            # Filter top-k keypoints if needed
            scores_valid = score[valid_indices]
            if self.top_k > 0 and len(kpts) > self.top_k:
                topk = torch.topk(scores_valid, self.top_k, dim=0)
                kpts = kpts[topk.indices]
                scores_valid = topk.values
            elif self.top_k < 0:
                if len(kpts) > self.n_limit:
                    sorted_idx = scores_valid.argsort(descending=True)[:self.n_limit]
                    kpts = kpts[sorted_idx]
                    scores_valid = scores_valid[sorted_idx]

            kpts_list.append(kpts)
            scores_list.append(scores_valid)

        return kpts_list, scores_list