Spaces:
Running
Running
File size: 19,760 Bytes
1b369eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import argparse
import os
import time
import sys
import glob
from pathlib import Path
from RDD.RDD_helper import RDD_helper
import torch.distributed
def parse_arguments():
parser = argparse.ArgumentParser(description="XFeat training script.")
parser.add_argument('--megadepth_root_path', type=str, default='./data/megadepth',
help='Path to the MegaDepth dataset root directory.')
parser.add_argument('--test_data_root', type=str, default='./data/megadepth_test_1500',
help='Path to the MegaDepth test dataset root directory.')
parser.add_argument('--ckpt_save_path', type=str, required=True,
help='Path to save the checkpoints.')
parser.add_argument('--model_name', type=str, default='RDD',
help='Name of the model to save.')
parser.add_argument('--air_ground_root_path', type=str, default='./data/air_ground_data_2/AirGround')
parser.add_argument('--batch_size', type=int, default=4,
help='Batch size for training. Default is 4.')
parser.add_argument('--lr', type=float, default=1e-4,
help='Learning rate. Default is 0.0001.')
parser.add_argument('--gamma_steplr', type=float, default=0.5,
help='Gamma value for StepLR scheduler. Default is 0.5.')
parser.add_argument('--training_res', type=int,
default=800, help='Training resolution as width,height. Default is 800 for training descriptor.')
parser.add_argument('--save_ckpt_every', type=int, default=500,
help='Save checkpoints every N steps. Default is 500.')
parser.add_argument('--test_every_iter', type=int, default=2000,
help='Save checkpoints every N steps. Default is 2000.')
parser.add_argument('--weights', type=str, default=None,)
parser.add_argument('--num_encoder_layers', type=int, default=4)
parser.add_argument('--enc_n_points', type=int, default=8)
parser.add_argument('--num_feature_levels', type=int, default=5)
parser.add_argument('--train_detector', action='store_true', default=False)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--distributed', action='store_true', default=False)
parser.add_argument('--config_path', type=str, default='./configs/default.yaml')
args = parser.parse_args()
return args
args = parse_arguments()
import torch
from torch import optim
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from RDD.RDD import build
from training.utils import *
from training.losses import *
from benchmarks.mega_1500 import MegaDepthPoseMNNBenchmark
from RDD.dataset.megadepth.megadepth import MegaDepthDataset
from RDD.dataset.megadepth import megadepth_warper
from torch.utils.data import Dataset, DataLoader, DistributedSampler, RandomSampler, WeightedRandomSampler
from training.losses.detector_loss import compute_correspondence, DetectorLoss
from training.losses.descriptor_loss import DescriptorLoss
import tqdm
from torch.optim.lr_scheduler import MultiStepLR, StepLR
from datetime import timedelta
from RDD.utils import read_config
torch.autograd.set_detect_anomaly(True)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
class Trainer():
"""
Class for training XFeat with default params as described in the paper.
We use a blend of MegaDepth (labeled) pairs with synthetically warped images (self-supervised).
The major bottleneck is to keep loading huge megadepth h5 files from disk,
the network training itself is quite fast.
"""
def __init__(self, rank, args=None):
config = read_config(args.config_path)
config['num_encoder_layers'] = args.num_encoder_layers
config['enc_n_points'] = args.enc_n_points
config['num_feature_levels'] = args.num_feature_levels
config['train_detector'] = args.train_detector
config['weights'] = args.weights
# distributed training
if args.distributed:
print(f"Training in distributed mode with {args.n_gpus} GPUs")
assert torch.cuda.is_available()
device = rank
torch.distributed.init_process_group(
backend="nccl",
world_size=args.n_gpus,
rank=device,
init_method="file://" + str(args.lock_file),
timeout=timedelta(seconds=2000)
)
torch.cuda.set_device(device)
# adjust batch size and num of workers since these are per GPU
batch_size = int(args.batch_size / args.n_gpus)
self.n_gpus = args.n_gpus
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_size = args.batch_size
print(f"Using device {device}")
self.seed = 0
self.set_seed(self.seed)
self.training_res = args.training_res
self.dev = device
config['device'] = device
model = build(config)
self.rank = rank
if args.weights is not None:
print('Loading weights from ', args.weights)
model.load_state_dict(torch.load(args.weights, map_location='cpu'))
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
self.model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[device], find_unused_parameters=True
)
else:
self.model = model.to(device)
self.saved_ckpts = []
self.best = -1.0
self.best_loss = 1e6
self.fine_weight = 1.0
self.dual_softmax_weight = 1.0
self.heatmaps_weight = 1.0
#Setup optimizer
self.batch_size = batch_size
self.epochs = args.epochs
self.opt = optim.AdamW(filter(lambda x: x.requires_grad, self.model.parameters()) , lr = args.lr, weight_decay=1e-4)
# losses
if args.train_detector:
self.DetectorLoss = DetectorLoss(temperature=0.1, scores_th=0.1)
else:
self.DescriptorLoss = DescriptorLoss(inv_temp=20, dual_softmax_weight=1, heatmap_weight=1)
self.benchmark = MegaDepthPoseMNNBenchmark(data_root=args.test_data_root)
##################### MEGADEPTH INIT ##########################
TRAIN_BASE_PATH = f"{args.megadepth_root_path}/megadepth_indices"
print('Loading MegaDepth dataset from ', TRAIN_BASE_PATH)
TRAINVAL_DATA_SOURCE = args.megadepth_root_path
self.TRAINVAL_DATA_SOURCE = TRAINVAL_DATA_SOURCE
TRAIN_NPZ_ROOT = f"{TRAIN_BASE_PATH}/scene_info_0.1_0.7"
self.TRAIN_NPZ_ROOT = TRAIN_NPZ_ROOT
npz_paths = glob.glob(TRAIN_NPZ_ROOT + '/*.npz')[:]
self.npz_paths = npz_paths
self.epoch = 0
self.create_data_loader()
##################### MEGADEPTH INIT END #######################
os.makedirs(args.ckpt_save_path, exist_ok=True)
os.makedirs(args.ckpt_save_path / 'logdir', exist_ok=True)
self.save_ckpt_every = args.save_ckpt_every
self.ckpt_save_path = args.ckpt_save_path
if rank == 0:
self.writer = SummaryWriter(str(self.ckpt_save_path) + f'/logdir/{args.model_name}_' + time.strftime("%Y_%m_%d-%H_%M_%S"))
else:
self.writer = None
self.model_name = args.model_name
if args.distributed:
self.scheduler = MultiStepLR(self.opt, milestones=[2, 4, 8, 16], gamma=args.gamma_steplr)
else:
self.scheduler = StepLR(self.opt, step_size=args.test_every_iter, gamma=args.gamma_steplr)
def set_seed(self, seed):
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def create_data_loader(self):
# Create sampler
if not args.train_detector:
mega_crop = torch.utils.data.ConcatDataset( [MegaDepthDataset(root = self.TRAINVAL_DATA_SOURCE,
npz_path = path, min_overlap_score=0.01, max_overlap_score=0.7, image_size=self.training_res, num_per_scene=200, gray=False, crop_or_scale='crop') for path in self.npz_paths] )
mega_scale = torch.utils.data.ConcatDataset( [MegaDepthDataset(root = self.TRAINVAL_DATA_SOURCE,
npz_path = path, min_overlap_score=0.01, max_overlap_score=0.7, image_size=self.training_res, num_per_scene=200, gray=False, crop_or_scale='scale') for path in self.npz_paths] )
combined_dataset = torch.utils.data.ConcatDataset([mega_crop, mega_scale])
else:
mega_crop = torch.utils.data.ConcatDataset( [MegaDepthDataset(root = self.TRAINVAL_DATA_SOURCE,
npz_path = path, min_overlap_score=0.1, max_overlap_score=0.8, image_size=self.training_res, num_per_scene=100, gray=False, crop_or_scale='crop') for path in self.npz_paths] )
mega_scale = torch.utils.data.ConcatDataset( [MegaDepthDataset(root = self.TRAINVAL_DATA_SOURCE,
npz_path = path, min_overlap_score=0.1, max_overlap_score=0.8, image_size=self.training_res, num_per_scene=100, gray=False, crop_or_scale='scale') for path in self.npz_paths] )
combined_dataset = torch.utils.data.ConcatDataset([mega_crop, mega_scale])
# Create sampler
if args.distributed:
sampler = DistributedSampler(combined_dataset, rank=self.rank, num_replicas=self.n_gpus)
else:
# Create sampler
sampler = RandomSampler(combined_dataset)
# Create single DataLoader with combined dataset
self.data_loader = DataLoader(combined_dataset,
batch_size=self.batch_size,
sampler=sampler,
num_workers=4,
pin_memory=True)
def validate(self, total_steps):
with torch.no_grad():
if args.train_detector:
method = 'sparse'
else:
method = 'aliked'
if args.distributed:
self.model.module.eval()
model_helper = RDD_helper(self.model.module)
test_out = self.benchmark.benchmark(model_helper, model_name='experiment', plot_every_iter=1, plot=False, method=method)
else:
self.model.eval()
model_helper = RDD_helper(self.model)
test_out = self.benchmark.benchmark(model_helper, model_name='experiment', plot_every_iter=1, plot=False, method=method)
auc5 = test_out['auc_5']
auc10 = test_out['auc_10']
auc20 = test_out['auc_20']
if self.rank == 0:
self.writer.add_scalar('Accuracy/auc5', auc5, total_steps)
self.writer.add_scalar('Accuracy/auc10', auc10, total_steps)
self.writer.add_scalar('Accuracy/auc20', auc20, total_steps)
if auc5 > self.best:
self.best = auc5
if args.distributed:
torch.save(self.model.module.state_dict(), str(self.ckpt_save_path) + f'/{self.model_name}_best.pth')
else:
torch.save(self.model.state_dict(), str(self.ckpt_save_path) + f'/{self.model_name}_best.pth')
self.model.train()
def _inference(self, d):
if d is not None:
for k in d.keys():
if isinstance(d[k], torch.Tensor):
d[k] = d[k].to(self.dev)
p1, p2 = d['image0'], d['image1']
if not args.train_detector:
positives_md_coarse = megadepth_warper.spvs_coarse(d, self.stride)
with torch.no_grad():
p1 = p1 ; p2 = p2
if not args.train_detector:
positives_c = positives_md_coarse
# Check if batch is corrupted with too few correspondences
is_corrupted = False
if not args.train_detector:
for p in positives_c:
if len(p) < 30:
is_corrupted = True
if is_corrupted:
return None, None, None, None
# Forward pass
feats1, scores_map1, hmap1 = self.model(p1)
feats2, scores_map2, hmap2 = self.model(p2)
if args.train_detector:
# move all tensors on batch to GPU
for k in d.keys():
if isinstance(d[k], torch.Tensor):
d[k] = d[k].to(self.dev)
elif isinstance(d[k], dict):
for k2 in d[k].keys():
if isinstance(d[k][k2], torch.Tensor):
d[k][k2] = d[k][k2].to(self.dev)
# Get positive correspondencies
pred0 = {'descriptor_map': F.interpolate(feats1, size=scores_map1.shape[-2:], mode='bilinear', align_corners=True), 'scores_map': scores_map1 }
pred1 = {'descriptor_map': F.interpolate(feats2, size=scores_map2.shape[-2:], mode='bilinear', align_corners=True), 'scores_map': scores_map2 }
if args.distributed:
correspondences, pred0_with_rand, pred1_with_rand = compute_correspondence(self.model.module, pred0, pred1, d, debug=True)
else:
correspondences, pred0_with_rand, pred1_with_rand = compute_correspondence(self.model, pred0, pred1, d, debug=False)
loss_kp = self.DetectorLoss(correspondences, pred0_with_rand, pred1_with_rand)
loss = loss_kp
acc_coarse, acc_kp, nb_coarse = 0, 0, 0
else:
loss_items = []
acc_coarse_items = []
acc_kp_items = []
for b in range(len(positives_c)):
if len(positives_c[b]) > 10000:
positives = positives_c[b][torch.randperm(len(positives_c[b]))[:10000]]
else:
positives = positives_c[b]
# Get positive correspondencies
pts1, pts2 = positives[:, :2], positives[:, 2:]
h1 = hmap1[b, :, :, :]
h2 = hmap2[b, :, :, :]
m1 = feats1[b, :, pts1[:,1].long(), pts1[:,0].long()].permute(1,0)
m2 = feats2[b, :, pts2[:,1].long(), pts2[:,0].long()].permute(1,0)
# Compute losses
loss_ds, loss_h, acc_kp = self.DescriptorLoss(m1, m2, h1, h2, pts1, pts2)
loss_items.append(loss_ds.unsqueeze(0))
acc_coarse = check_accuracy1(m1, m2)
acc_kp_items.append(acc_kp)
acc_coarse_items.append(acc_coarse)
nb_coarse = len(m1)
loss = loss_kp if args.train_detector else torch.cat(loss_items, -1).mean()
acc_coarse = sum(acc_coarse_items) / len(acc_coarse_items)
acc_kp = sum(acc_kp_items) / len(acc_kp_items)
return loss, acc_coarse, acc_kp, nb_coarse
def train(self):
self.model.train()
self.stride = 4 if args.num_feature_levels == 5 else 8
total_steps = 0
for epoch in range(self.epochs):
if args.distributed:
self.data_loader.sampler.set_epoch(epoch)
pbar = tqdm.tqdm(total=len(self.data_loader), desc=f"Epoch {epoch+1}/{args.epochs}") if self.rank == 0 else None
for i, d in enumerate(self.data_loader):
loss, acc_coarse, acc_kp, nb_coarse = self._inference(d)
if loss is None:
continue
# Compute Backward Pass
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.)
self.opt.step()
self.opt.zero_grad()
if (total_steps + 1) % self.save_ckpt_every == 0 and self.rank == 0:
print('saving iter ', total_steps + 1)
if args.distributed:
torch.save(self.model.module.state_dict(), str(self.ckpt_save_path) + f'/{self.model_name}_{total_steps + 1}.pth')
else:
torch.save(self.model.state_dict(), str(self.ckpt_save_path) + f'/{self.model_name}_{total_steps + 1}.pth')
self.saved_ckpts.append(total_steps + 1)
if len(self.saved_ckpts) > 5:
os.remove(str(self.ckpt_save_path) + f'/{self.model_name}_{self.saved_ckpts[0]}.pth')
self.saved_ckpts = self.saved_ckpts[1:]
if args.distributed:
torch.distributed.barrier()
if (total_steps+1) % args.test_every_iter == 0:
self.validate(total_steps)
if pbar is not None:
if args.train_detector:
pbar.set_description( 'Loss: {:.4f} '.format(loss.item()) )
else:
pbar.set_description( 'Loss: {:.4f} acc_coarse {:.3f} acc_kp: {:.3f} #matches_c: {:d}'.format(
loss.item(), acc_coarse, acc_kp, nb_coarse) )
pbar.update(1)
# Log metrics
if self.rank == 0:
self.writer.add_scalar('Loss/total', loss.item(), total_steps)
self.writer.add_scalar('Accuracy/coarse_mdepth', acc_coarse, total_steps)
self.writer.add_scalar('Count/matches_coarse', nb_coarse, total_steps)
if not args.distributed:
self.scheduler.step()
total_steps = total_steps + 1
self.validate(total_steps)
if self.rank == 0:
print('Epoch ', epoch, ' done.')
print('Creating new data loader with seed ', self.seed)
self.seed = self.seed + 1
self.set_seed(self.seed)
self.scheduler.step()
self.epoch = self.epoch + 1
self.create_data_loader()
def main_worker(rank, args):
trainer = Trainer(
rank=rank,
args=args
)
# The most fun part
trainer.train()
if __name__ == '__main__':
if args.distributed:
import torch.multiprocessing as mp
mp.set_start_method('spawn', force=True)
if not Path(args.ckpt_save_path).exists():
os.makedirs(args.ckpt_save_path)
args.ckpt_save_path = Path(args.ckpt_save_path).resolve()
if args.distributed:
args.n_gpus = torch.cuda.device_count()
args.lock_file = Path(args.ckpt_save_path) / "distributed_lock"
if args.lock_file.exists():
args.lock_file.unlink()
# Each process gets its own rank and dataset
torch.multiprocessing.spawn(
main_worker, nprocs=args.n_gpus, args=(args,)
)
else:
main_worker(0, args) |