File size: 19,760 Bytes
1b369eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import argparse
import os
import time
import sys
import glob
from pathlib import Path
from RDD.RDD_helper import RDD_helper
import torch.distributed

def parse_arguments():
    parser = argparse.ArgumentParser(description="XFeat training script.")

    parser.add_argument('--megadepth_root_path', type=str, default='./data/megadepth',
                        help='Path to the MegaDepth dataset root directory.')
    parser.add_argument('--test_data_root', type=str, default='./data/megadepth_test_1500',
                        help='Path to the MegaDepth test dataset root directory.')
    parser.add_argument('--ckpt_save_path', type=str, required=True,
                        help='Path to save the checkpoints.')
    parser.add_argument('--model_name', type=str, default='RDD',
                        help='Name of the model to save.')
    parser.add_argument('--air_ground_root_path', type=str, default='./data/air_ground_data_2/AirGround')
    parser.add_argument('--batch_size', type=int, default=4,
                        help='Batch size for training. Default is 4.')
    parser.add_argument('--lr', type=float, default=1e-4,
                        help='Learning rate. Default is 0.0001.')
    parser.add_argument('--gamma_steplr', type=float, default=0.5,
                        help='Gamma value for StepLR scheduler. Default is 0.5.')
    parser.add_argument('--training_res', type=int,
                        default=800, help='Training resolution as width,height. Default is 800 for training descriptor.')
    parser.add_argument('--save_ckpt_every', type=int, default=500,
                        help='Save checkpoints every N steps. Default is 500.')
    parser.add_argument('--test_every_iter', type=int, default=2000,
                        help='Save checkpoints every N steps. Default is 2000.')
    parser.add_argument('--weights', type=str, default=None,)
    parser.add_argument('--num_encoder_layers', type=int, default=4)
    parser.add_argument('--enc_n_points', type=int, default=8)
    parser.add_argument('--num_feature_levels', type=int, default=5)
    parser.add_argument('--train_detector', action='store_true', default=False)
    parser.add_argument('--epochs', type=int, default=20)
    parser.add_argument('--distributed', action='store_true', default=False)
    parser.add_argument('--config_path', type=str, default='./configs/default.yaml')
    args = parser.parse_args()

    return args

args = parse_arguments()

import torch
from torch import optim
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from RDD.RDD import build
from training.utils import *
from training.losses import *
from benchmarks.mega_1500 import MegaDepthPoseMNNBenchmark
from RDD.dataset.megadepth.megadepth import MegaDepthDataset
from RDD.dataset.megadepth import megadepth_warper
from torch.utils.data import Dataset, DataLoader, DistributedSampler, RandomSampler, WeightedRandomSampler
from training.losses.detector_loss import compute_correspondence, DetectorLoss
from training.losses.descriptor_loss import DescriptorLoss
import tqdm
from torch.optim.lr_scheduler import MultiStepLR, StepLR
from datetime import timedelta
from RDD.utils import read_config
torch.autograd.set_detect_anomaly(True)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True

class Trainer():
    """
        Class for training XFeat with default params as described in the paper.
        We use a blend of MegaDepth (labeled) pairs with synthetically warped images (self-supervised).
        The major bottleneck is to keep loading huge megadepth h5 files from disk, 
        the network training itself is quite fast.
    """
    
    def __init__(self, rank, args=None):
        config = read_config(args.config_path)
        
        config['num_encoder_layers'] = args.num_encoder_layers
        config['enc_n_points'] = args.enc_n_points
        config['num_feature_levels'] = args.num_feature_levels
        config['train_detector'] = args.train_detector
        config['weights'] = args.weights
        
        # distributed training
        if args.distributed:
            print(f"Training in distributed mode with {args.n_gpus} GPUs")
            assert torch.cuda.is_available()
            device = rank

            torch.distributed.init_process_group(
                backend="nccl",
                world_size=args.n_gpus,
                rank=device,
                init_method="file://" + str(args.lock_file),
                timeout=timedelta(seconds=2000)
            )
            torch.cuda.set_device(device)

            # adjust batch size and num of workers since these are per GPU
            batch_size = int(args.batch_size / args.n_gpus)
            self.n_gpus = args.n_gpus
        else:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            batch_size = args.batch_size
        print(f"Using device {device}")
        
        self.seed = 0
        self.set_seed(self.seed)
        self.training_res = args.training_res
        self.dev = device
        config['device'] = device
        model = build(config)
        
        self.rank = rank
        
        if args.weights is not None:
            print('Loading weights from ', args.weights)
            model.load_state_dict(torch.load(args.weights, map_location='cpu'))
                
        if args.distributed:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
            self.model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[device], find_unused_parameters=True
            )
        else:
            self.model = model.to(device)
        
        self.saved_ckpts = []
        self.best = -1.0
        self.best_loss = 1e6
        self.fine_weight = 1.0
        self.dual_softmax_weight = 1.0
        self.heatmaps_weight = 1.0
        #Setup optimizer 
        self.batch_size = batch_size
        self.epochs = args.epochs
        self.opt = optim.AdamW(filter(lambda x: x.requires_grad, self.model.parameters()) , lr = args.lr, weight_decay=1e-4)

        # losses
        if args.train_detector:
            self.DetectorLoss = DetectorLoss(temperature=0.1, scores_th=0.1)
        else:
            self.DescriptorLoss = DescriptorLoss(inv_temp=20, dual_softmax_weight=1, heatmap_weight=1)
        
        self.benchmark = MegaDepthPoseMNNBenchmark(data_root=args.test_data_root)

        ##################### MEGADEPTH INIT ##########################
        
        TRAIN_BASE_PATH = f"{args.megadepth_root_path}/megadepth_indices"
        print('Loading MegaDepth dataset from ', TRAIN_BASE_PATH)
        TRAINVAL_DATA_SOURCE = args.megadepth_root_path
        self.TRAINVAL_DATA_SOURCE = TRAINVAL_DATA_SOURCE
        TRAIN_NPZ_ROOT = f"{TRAIN_BASE_PATH}/scene_info_0.1_0.7"
        self.TRAIN_NPZ_ROOT = TRAIN_NPZ_ROOT
        npz_paths = glob.glob(TRAIN_NPZ_ROOT + '/*.npz')[:]
        self.npz_paths = npz_paths
        self.epoch = 0
        self.create_data_loader()

        ##################### MEGADEPTH INIT END #######################

        os.makedirs(args.ckpt_save_path, exist_ok=True)
        os.makedirs(args.ckpt_save_path / 'logdir', exist_ok=True)

        self.save_ckpt_every = args.save_ckpt_every
        self.ckpt_save_path = args.ckpt_save_path
        if rank == 0:
            self.writer = SummaryWriter(str(self.ckpt_save_path) + f'/logdir/{args.model_name}_' + time.strftime("%Y_%m_%d-%H_%M_%S"))
        else:
            self.writer = None
        self.model_name = args.model_name
        
        if args.distributed:
            self.scheduler = MultiStepLR(self.opt, milestones=[2, 4, 8, 16], gamma=args.gamma_steplr)
        else:
            self.scheduler = StepLR(self.opt, step_size=args.test_every_iter, gamma=args.gamma_steplr)
        
    def set_seed(self, seed):
        np.random.seed(seed)
        torch.manual_seed(seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed(seed)
            torch.cuda.manual_seed_all(seed)
    
    def create_data_loader(self):
        # Create sampler

            
        if not args.train_detector:
            mega_crop = torch.utils.data.ConcatDataset( [MegaDepthDataset(root = self.TRAINVAL_DATA_SOURCE,
                            npz_path = path, min_overlap_score=0.01, max_overlap_score=0.7, image_size=self.training_res, num_per_scene=200, gray=False, crop_or_scale='crop') for path in self.npz_paths] )
            mega_scale = torch.utils.data.ConcatDataset( [MegaDepthDataset(root = self.TRAINVAL_DATA_SOURCE,
                            npz_path = path, min_overlap_score=0.01, max_overlap_score=0.7, image_size=self.training_res, num_per_scene=200, gray=False, crop_or_scale='scale') for path in self.npz_paths] )
            combined_dataset = torch.utils.data.ConcatDataset([mega_crop, mega_scale])
            
        else:

            mega_crop = torch.utils.data.ConcatDataset( [MegaDepthDataset(root = self.TRAINVAL_DATA_SOURCE,
                            npz_path = path, min_overlap_score=0.1, max_overlap_score=0.8, image_size=self.training_res, num_per_scene=100, gray=False, crop_or_scale='crop') for path in self.npz_paths] )
            mega_scale = torch.utils.data.ConcatDataset( [MegaDepthDataset(root = self.TRAINVAL_DATA_SOURCE,
                            npz_path = path, min_overlap_score=0.1, max_overlap_score=0.8, image_size=self.training_res, num_per_scene=100, gray=False, crop_or_scale='scale') for path in self.npz_paths] )
            combined_dataset = torch.utils.data.ConcatDataset([mega_crop, mega_scale])

        # Create sampler
        if args.distributed:
            sampler = DistributedSampler(combined_dataset, rank=self.rank, num_replicas=self.n_gpus)
        else:
            # Create sampler
            sampler = RandomSampler(combined_dataset)

        # Create single DataLoader with combined dataset
        self.data_loader = DataLoader(combined_dataset, 
                                    batch_size=self.batch_size, 
                                    sampler=sampler, 
                                    num_workers=4,
                                    pin_memory=True)

    def validate(self, total_steps):
            
        with torch.no_grad():
            
            
            if args.train_detector:
                method = 'sparse'
            else:
                method = 'aliked'
            
            if args.distributed:
                self.model.module.eval()
                model_helper = RDD_helper(self.model.module)
                test_out = self.benchmark.benchmark(model_helper, model_name='experiment', plot_every_iter=1, plot=False, method=method)
            else:
                self.model.eval()
                model_helper = RDD_helper(self.model)
                test_out = self.benchmark.benchmark(model_helper, model_name='experiment', plot_every_iter=1, plot=False, method=method)
                
            auc5 = test_out['auc_5']
            auc10 = test_out['auc_10']
            auc20 = test_out['auc_20']
            if self.rank == 0:
                self.writer.add_scalar('Accuracy/auc5', auc5, total_steps)
                self.writer.add_scalar('Accuracy/auc10', auc10, total_steps)
                self.writer.add_scalar('Accuracy/auc20', auc20, total_steps)
                if auc5 > self.best:
                    self.best = auc5
                    if args.distributed:
                        torch.save(self.model.module.state_dict(), str(self.ckpt_save_path) + f'/{self.model_name}_best.pth')
                    else:
                        torch.save(self.model.state_dict(), str(self.ckpt_save_path) + f'/{self.model_name}_best.pth')
        
        self.model.train()
        
    
    def _inference(self, d):
        if d is not None:
            for k in d.keys():
                if isinstance(d[k], torch.Tensor):
                    d[k] = d[k].to(self.dev)
            p1, p2 = d['image0'], d['image1']
                
            if not args.train_detector:
                positives_md_coarse = megadepth_warper.spvs_coarse(d, self.stride)
        
        with torch.no_grad():
            p1 = p1 ; p2 = p2
            if not args.train_detector:
                positives_c = positives_md_coarse
            
        
        # Check if batch is corrupted with too few correspondences
        is_corrupted = False
        if not args.train_detector:
            for p in positives_c:
                if len(p) < 30:
                    is_corrupted = True

        if is_corrupted:
            return None, None, None, None

        # Forward pass
        
        feats1, scores_map1, hmap1 = self.model(p1)
        feats2, scores_map2, hmap2 = self.model(p2)
        
        if args.train_detector:
            
            # move all tensors on batch to GPU
            for k in d.keys():
                if isinstance(d[k], torch.Tensor):
                    d[k] = d[k].to(self.dev)
                elif isinstance(d[k], dict):
                    for k2 in d[k].keys():
                        if isinstance(d[k][k2], torch.Tensor):
                            d[k][k2] = d[k][k2].to(self.dev)
                            
            # Get positive correspondencies 
            pred0 = {'descriptor_map': F.interpolate(feats1, size=scores_map1.shape[-2:], mode='bilinear', align_corners=True), 'scores_map': scores_map1 }
            pred1 = {'descriptor_map': F.interpolate(feats2, size=scores_map2.shape[-2:], mode='bilinear', align_corners=True), 'scores_map': scores_map2 }
            if args.distributed:
                correspondences, pred0_with_rand, pred1_with_rand = compute_correspondence(self.model.module, pred0, pred1, d, debug=True)
            else:
                correspondences, pred0_with_rand, pred1_with_rand = compute_correspondence(self.model, pred0, pred1, d, debug=False)
            
            loss_kp = self.DetectorLoss(correspondences, pred0_with_rand, pred1_with_rand)
            
            loss = loss_kp
            acc_coarse, acc_kp, nb_coarse = 0, 0, 0
        else:
                
            loss_items = []
            acc_coarse_items = []
            acc_kp_items = []
            
            for b in range(len(positives_c)):
                
                if len(positives_c[b]) > 10000:
                    positives = positives_c[b][torch.randperm(len(positives_c[b]))[:10000]]
                else:
                    positives = positives_c[b]
                # Get positive correspondencies
                pts1, pts2 = positives[:, :2], positives[:, 2:]
                
                h1 = hmap1[b, :, :, :]
                h2 = hmap2[b, :, :, :]
                
                m1 = feats1[b, :, pts1[:,1].long(), pts1[:,0].long()].permute(1,0)
                m2 = feats2[b, :, pts2[:,1].long(), pts2[:,0].long()].permute(1,0) 
                # Compute losses
                loss_ds, loss_h, acc_kp = self.DescriptorLoss(m1, m2, h1, h2, pts1, pts2)
                
                loss_items.append(loss_ds.unsqueeze(0))

                acc_coarse = check_accuracy1(m1, m2)
                acc_kp_items.append(acc_kp)
                acc_coarse_items.append(acc_coarse)

            nb_coarse = len(m1)
            loss = loss_kp if args.train_detector else torch.cat(loss_items, -1).mean()
            acc_coarse = sum(acc_coarse_items) / len(acc_coarse_items)
            acc_kp = sum(acc_kp_items) / len(acc_kp_items)
        
        return loss, acc_coarse, acc_kp, nb_coarse
    
    def train(self):

        self.model.train()
        self.stride = 4 if args.num_feature_levels == 5 else 8
        total_steps = 0
        
        for epoch in range(self.epochs):
            
            if args.distributed:
                self.data_loader.sampler.set_epoch(epoch)
            pbar = tqdm.tqdm(total=len(self.data_loader), desc=f"Epoch {epoch+1}/{args.epochs}") if self.rank == 0 else None
           
            for i, d in enumerate(self.data_loader):
                
                loss, acc_coarse, acc_kp, nb_coarse = self._inference(d)
                
                if loss is None:
                    continue
                
                # Compute Backward Pass
                loss.backward()
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.)
                self.opt.step()
                self.opt.zero_grad()

                if (total_steps + 1) % self.save_ckpt_every == 0 and self.rank == 0:
                    print('saving iter ', total_steps + 1)
                    if args.distributed:
                        torch.save(self.model.module.state_dict(), str(self.ckpt_save_path) + f'/{self.model_name}_{total_steps + 1}.pth')
                    else:
                        torch.save(self.model.state_dict(), str(self.ckpt_save_path) + f'/{self.model_name}_{total_steps + 1}.pth')
                    self.saved_ckpts.append(total_steps + 1)
                    if len(self.saved_ckpts) > 5:
                        os.remove(str(self.ckpt_save_path) + f'/{self.model_name}_{self.saved_ckpts[0]}.pth')
                        self.saved_ckpts = self.saved_ckpts[1:]
                
                if args.distributed:
                    torch.distributed.barrier()
                    
                if (total_steps+1) % args.test_every_iter == 0:
                    self.validate(total_steps)
                
                if pbar is not None:
                    
                    if args.train_detector:
                        pbar.set_description( 'Loss: {:.4f} '.format(loss.item()) )
                    else:
                        pbar.set_description( 'Loss: {:.4f} acc_coarse {:.3f} acc_kp: {:.3f} #matches_c: {:d}'.format(
                                                                                loss.item(), acc_coarse, acc_kp, nb_coarse) )
                    pbar.update(1)

                # Log metrics
                if self.rank == 0:
                    self.writer.add_scalar('Loss/total', loss.item(), total_steps)
                    self.writer.add_scalar('Accuracy/coarse_mdepth', acc_coarse, total_steps)
                    self.writer.add_scalar('Count/matches_coarse', nb_coarse, total_steps)
                
                if not args.distributed:
                    self.scheduler.step()
                total_steps = total_steps + 1

            self.validate(total_steps)
            if self.rank == 0:
                print('Epoch ', epoch, ' done.')
                print('Creating new data loader with seed ', self.seed)
            self.seed = self.seed + 1
            self.set_seed(self.seed)
            self.scheduler.step()
            self.epoch = self.epoch + 1
            self.create_data_loader()
             
def main_worker(rank, args):
    trainer = Trainer(
        rank=rank,
        args=args
    )

    # The most fun part
    trainer.train()

if __name__ == '__main__':
    if args.distributed:
        import torch.multiprocessing as mp
        mp.set_start_method('spawn', force=True)  
    
    if not Path(args.ckpt_save_path).exists():
        os.makedirs(args.ckpt_save_path)
    
    args.ckpt_save_path = Path(args.ckpt_save_path).resolve()

    if args.distributed:
        args.n_gpus = torch.cuda.device_count()
        args.lock_file = Path(args.ckpt_save_path) / "distributed_lock"
        if args.lock_file.exists():
            args.lock_file.unlink()
        
        # Each process gets its own rank and dataset
        torch.multiprocessing.spawn(
            main_worker, nprocs=args.n_gpus, args=(args,)
        )
    else:
        main_worker(0, args)