Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,768 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
-
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.Textbox(
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
import re
|
7 |
+
from uuid import uuid4
|
8 |
+
from datetime import datetime
|
9 |
+
from duckduckgo_search import ddg
|
10 |
+
from sentence_transformers import SentenceTransformer, util
|
11 |
+
from typing import List, Dict, Any, Optional, Union, Tuple
|
12 |
+
import logging
|
13 |
+
import pandas as pd
|
14 |
+
import numpy as np
|
15 |
+
from collections import deque
|
16 |
|
17 |
+
# Set up logging
|
18 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
# Configuration
|
22 |
+
HF_API_KEY = os.environ.get("HF_API_KEY")
|
23 |
+
if not HF_API_KEY:
|
24 |
+
raise ValueError("Please set the HF_API_KEY environment variable.")
|
25 |
+
|
26 |
+
# You can use different models for different tasks
|
27 |
+
MAIN_LLM_ENDPOINT = "your-main-llm-endpoint"
|
28 |
+
REASONING_LLM_ENDPOINT = "your-reasoning-llm-endpoint" # Can be the same as main if needed
|
29 |
+
CRITIC_LLM_ENDPOINT = "your-critic-llm-endpoint" # Can be the same as main if needed
|
30 |
+
|
31 |
+
MAX_ITERATIONS = 12 # Increased from 7
|
32 |
+
TIMEOUT = 60
|
33 |
+
RETRY_DELAY = 5
|
34 |
+
NUM_RESULTS = 10 # Increased from 7
|
35 |
+
SIMILARITY_THRESHOLD = 0.15 # Lowered from 0.2 to get more potentially relevant results
|
36 |
+
MAX_CONTEXT_ITEMS = 20 # Prevent context from growing too large
|
37 |
+
MAX_HISTORY_ITEMS = 5 # For keeping track of previous queries/reasoning
|
38 |
+
|
39 |
+
# Load multiple embedding models for different purposes
|
40 |
+
try:
|
41 |
+
main_similarity_model = SentenceTransformer('all-mpnet-base-v2')
|
42 |
+
concept_similarity_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') # Faster, lighter model for concept matching
|
43 |
+
except Exception as e:
|
44 |
+
logger.error(f"Failed to load SentenceTransformer models: {e}")
|
45 |
+
main_similarity_model = None
|
46 |
+
concept_similarity_model = None
|
47 |
+
|
48 |
+
def hf_inference(endpoint, inputs, parameters=None, retries=5):
|
49 |
+
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
|
50 |
+
payload = {"inputs": inputs, "parameters": parameters or {}}
|
51 |
+
|
52 |
+
for attempt in range(retries):
|
53 |
+
try:
|
54 |
+
response = requests.post(endpoint, headers=headers, json=payload, timeout=TIMEOUT)
|
55 |
+
response.raise_for_status()
|
56 |
+
return response.json()
|
57 |
+
except requests.exceptions.RequestException as e:
|
58 |
+
if attempt == retries - 1:
|
59 |
+
logger.error(f"Request failed after {retries} retries: {e}")
|
60 |
+
return {"error": f"Request failed after {retries} retries: {e}"}
|
61 |
+
time.sleep(RETRY_DELAY * (1 + attempt)) # Exponential backoff
|
62 |
+
return {"error": "Request failed after multiple retries."}
|
63 |
+
|
64 |
+
def tool_search_web(query: str, num_results: int = NUM_RESULTS, safesearch: str = "moderate",
|
65 |
+
time_filter: str = "", region: str = "wt-wt", language: str = "en-us") -> list:
|
66 |
+
try:
|
67 |
+
results = ddg(query, max_results=num_results, safesearch=safesearch,
|
68 |
+
time=time_filter, region=region, language=language)
|
69 |
+
if results:
|
70 |
+
return [{"title": r["title"], "snippet": r["snippet"], "url": r["href"]} for r in results]
|
71 |
+
else:
|
72 |
+
return []
|
73 |
+
except Exception as e:
|
74 |
+
logger.error(f"DuckDuckGo search error: {e}")
|
75 |
+
return []
|
76 |
+
|
77 |
+
def tool_reason(prompt: str, search_results: list, reasoning_context: list = [],
|
78 |
+
critique: str = "", focus_areas: list = []) -> str:
|
79 |
+
if not search_results:
|
80 |
+
return "No search results to reason about."
|
81 |
+
|
82 |
+
reasoning_input = "Reason about the following search results in relation to the prompt:\n\n"
|
83 |
+
reasoning_input += f"Prompt: {prompt}\n\n"
|
84 |
+
|
85 |
+
if focus_areas:
|
86 |
+
reasoning_input += f"Focus particularly on these aspects: {', '.join(focus_areas)}\n\n"
|
87 |
+
|
88 |
+
for i, result in enumerate(search_results):
|
89 |
+
reasoning_input += f"- Result {i + 1}: Title: {result['title']}, Snippet: {result['snippet']}\n"
|
90 |
+
|
91 |
+
if reasoning_context:
|
92 |
+
recent_context = reasoning_context[-MAX_HISTORY_ITEMS:]
|
93 |
+
reasoning_input += "\nPrevious Reasoning Context:\n" + "\n".join(recent_context)
|
94 |
+
|
95 |
+
if critique:
|
96 |
+
reasoning_input += f"\n\nRecent critique to address: {critique}\n"
|
97 |
+
|
98 |
+
reasoning_input += "\nProvide a thorough, nuanced analysis that builds upon previous reasoning if applicable. Consider multiple perspectives and potential contradictions in the search results."
|
99 |
+
|
100 |
+
reasoning_output = hf_inference(REASONING_LLM_ENDPOINT, reasoning_input)
|
101 |
+
|
102 |
+
if isinstance(reasoning_output, dict) and "generated_text" in reasoning_output:
|
103 |
+
return reasoning_output["generated_text"].strip()
|
104 |
+
else:
|
105 |
+
logger.error(f"Failed to generate reasoning: {reasoning_output}")
|
106 |
+
return "Could not generate reasoning due to an error."
|
107 |
+
|
108 |
+
def tool_summarize(insights: list, prompt: str, contradictions: list = []) -> str:
|
109 |
+
if not insights:
|
110 |
+
return "No insights to summarize."
|
111 |
+
|
112 |
+
summarization_input = f"Synthesize the following insights into a cohesive and comprehensive summary regarding: '{prompt}'\n\n"
|
113 |
+
summarization_input += "\n\n".join(insights[-MAX_HISTORY_ITEMS:]) # Only use most recent insights
|
114 |
+
|
115 |
+
if contradictions:
|
116 |
+
summarization_input += "\n\nAddress these specific contradictions:\n" + "\n".join(contradictions)
|
117 |
+
|
118 |
+
summarization_input += "\n\nProvide a well-structured summary that:\n1. Presents the main findings\n2. Acknowledges limitations and uncertainties\n3. Highlights areas of consensus and disagreement\n4. Suggests potential directions for further inquiry"
|
119 |
+
|
120 |
+
summarization_output = hf_inference(MAIN_LLM_ENDPOINT, summarization_input)
|
121 |
+
|
122 |
+
if isinstance(summarization_output, dict) and "generated_text" in summarization_output:
|
123 |
+
return summarization_output["generated_text"].strip()
|
124 |
+
else:
|
125 |
+
logger.error(f"Failed to generate summary: {summarization_output}")
|
126 |
+
return "Could not generate a summary due to an error."
|
127 |
+
|
128 |
+
def tool_generate_search_query(prompt: str, previous_queries: list = [],
|
129 |
+
failed_queries: list = [], focus_areas: list = []) -> str:
|
130 |
+
query_gen_input = f"Generate an effective search query for the following prompt: {prompt}\n"
|
131 |
+
|
132 |
+
if previous_queries:
|
133 |
+
recent_queries = previous_queries[-MAX_HISTORY_ITEMS:]
|
134 |
+
query_gen_input += "Previous search queries:\n" + "\n".join(recent_queries) + "\n"
|
135 |
+
|
136 |
+
if failed_queries:
|
137 |
+
query_gen_input += "These queries didn't yield useful results:\n" + "\n".join(failed_queries) + "\n"
|
138 |
+
|
139 |
+
if focus_areas:
|
140 |
+
query_gen_input += f"Focus particularly on these aspects: {', '.join(focus_areas)}\n"
|
141 |
+
|
142 |
+
query_gen_input += "Refine the search query based on previous queries, aiming for more precise results.\n"
|
143 |
+
query_gen_input += "Search Query:"
|
144 |
+
|
145 |
+
query_gen_output = hf_inference(MAIN_LLM_ENDPOINT, query_gen_input)
|
146 |
+
|
147 |
+
if isinstance(query_gen_output, dict) and 'generated_text' in query_gen_output:
|
148 |
+
return query_gen_output['generated_text'].strip()
|
149 |
+
|
150 |
+
logger.error(f"Failed to generate search query: {query_gen_output}")
|
151 |
+
return ""
|
152 |
+
|
153 |
+
def tool_critique_reasoning(reasoning_output: str, prompt: str,
|
154 |
+
previous_critiques: list = []) -> str:
|
155 |
+
critique_input = f"Critically evaluate the following reasoning output in relation to the prompt:\n\nPrompt: {prompt}\n\nReasoning: {reasoning_output}\n\n"
|
156 |
+
|
157 |
+
if previous_critiques:
|
158 |
+
critique_input += "Previous critiques that should be addressed:\n" + "\n".join(previous_critiques[-MAX_HISTORY_ITEMS:]) + "\n\n"
|
159 |
+
|
160 |
+
critique_input += "Identify any flaws, biases, logical fallacies, unsupported claims, or areas for improvement. Be specific and constructive. Suggest concrete ways to enhance the reasoning."
|
161 |
+
|
162 |
+
critique_output = hf_inference(CRITIC_LLM_ENDPOINT, critique_input)
|
163 |
+
|
164 |
+
if isinstance(critique_output, dict) and "generated_text" in critique_output:
|
165 |
+
return critique_output["generated_text"].strip()
|
166 |
+
|
167 |
+
logger.error(f"Failed to generate critique: {critique_output}")
|
168 |
+
return "Could not generate a critique due to an error."
|
169 |
+
|
170 |
+
def tool_identify_contradictions(insights: list) -> list:
|
171 |
+
if len(insights) < 2:
|
172 |
+
return []
|
173 |
+
|
174 |
+
contradiction_input = "Identify specific contradictions in these insights:\n\n" + "\n\n".join(insights[-MAX_HISTORY_ITEMS:])
|
175 |
+
contradiction_input += "\n\nList each contradiction as a separate numbered point. If no contradictions exist, respond with 'No contradictions found.'"
|
176 |
+
|
177 |
+
contradiction_output = hf_inference(CRITIC_LLM_ENDPOINT, contradiction_input)
|
178 |
+
|
179 |
+
if isinstance(contradiction_output, dict) and "generated_text" in contradiction_output:
|
180 |
+
result = contradiction_output["generated_text"].strip()
|
181 |
+
if result == "No contradictions found.":
|
182 |
+
return []
|
183 |
+
|
184 |
+
# Extract numbered contradictions
|
185 |
+
contradictions = re.findall(r'\d+\.\s+(.*?)(?=\d+\.|$)', result, re.DOTALL)
|
186 |
+
return [c.strip() for c in contradictions if c.strip()]
|
187 |
+
|
188 |
+
logger.error(f"Failed to identify contradictions: {contradiction_output}")
|
189 |
+
return []
|
190 |
+
|
191 |
+
def tool_identify_focus_areas(prompt: str, insights: list = [],
|
192 |
+
failed_areas: list = []) -> list:
|
193 |
+
focus_input = f"Based on this research prompt: '{prompt}'\n\n"
|
194 |
+
|
195 |
+
if insights:
|
196 |
+
focus_input += "And these existing insights:\n" + "\n".join(insights[-3:]) + "\n\n" # Last 3 insights
|
197 |
+
|
198 |
+
if failed_areas:
|
199 |
+
focus_input += f"These focus areas didn't yield useful results: {', '.join(failed_areas)}\n\n"
|
200 |
+
|
201 |
+
focus_input += "Identify 2-3 specific aspects that should be investigated further to get a complete understanding. Be precise and prioritize underexplored areas."
|
202 |
+
|
203 |
+
focus_output = hf_inference(MAIN_LLM_ENDPOINT, focus_input)
|
204 |
+
|
205 |
+
if isinstance(focus_output, dict) and "generated_text" in focus_output:
|
206 |
+
result = focus_output["generated_text"].strip()
|
207 |
+
# Extract areas, assuming they're listed with numbers, bullets, or in separate lines
|
208 |
+
areas = re.findall(r'(?:^|\n)(?:\d+\.|\*|\-)\s*(.*?)(?=(?:\n(?:\d+\.|\*|\-|$))|$)', result)
|
209 |
+
return [area.strip() for area in areas if area.strip()][:3] # Limit to top 3
|
210 |
+
|
211 |
+
logger.error(f"Failed to identify focus areas: {focus_output}")
|
212 |
+
return []
|
213 |
+
|
214 |
+
def filter_results(search_results, prompt, previous_snippets=None):
|
215 |
+
if not main_similarity_model or not search_results:
|
216 |
+
return search_results
|
217 |
+
|
218 |
+
try:
|
219 |
+
prompt_embedding = main_similarity_model.encode(prompt, convert_to_tensor=True)
|
220 |
+
filtered_results = []
|
221 |
+
|
222 |
+
# Keep track of snippets we've already seen
|
223 |
+
seen_snippets = set()
|
224 |
+
if previous_snippets:
|
225 |
+
seen_snippets.update(previous_snippets)
|
226 |
+
|
227 |
+
for result in search_results:
|
228 |
+
combined_text = result['title'] + " " + result['snippet']
|
229 |
+
|
230 |
+
# Skip if we've seen this exact snippet before
|
231 |
+
if result['snippet'] in seen_snippets:
|
232 |
+
continue
|
233 |
+
|
234 |
+
result_embedding = main_similarity_model.encode(combined_text, convert_to_tensor=True)
|
235 |
+
cosine_score = util.pytorch_cos_sim(prompt_embedding, result_embedding)[0][0].item()
|
236 |
+
|
237 |
+
if cosine_score >= SIMILARITY_THRESHOLD:
|
238 |
+
result['relevance_score'] = cosine_score
|
239 |
+
filtered_results.append(result)
|
240 |
+
seen_snippets.add(result['snippet'])
|
241 |
+
|
242 |
+
# Sort by relevance score
|
243 |
+
filtered_results.sort(key=lambda x: x.get('relevance_score', 0), reverse=True)
|
244 |
+
return filtered_results
|
245 |
+
|
246 |
+
except Exception as e:
|
247 |
+
logger.error(f"Error during filtering: {e}")
|
248 |
+
return search_results
|
249 |
+
|
250 |
+
# New tool: Extract entities for focused research
|
251 |
+
def tool_extract_key_entities(prompt: str) -> list:
|
252 |
+
entity_input = f"Extract the key entities (people, organizations, concepts, technologies, etc.) from this research prompt that should be investigated individually:\n\n{prompt}\n\nList only the most important 3-5 entities, one per line."
|
253 |
+
|
254 |
+
entity_output = hf_inference(MAIN_LLM_ENDPOINT, entity_input)
|
255 |
+
|
256 |
+
if isinstance(entity_output, dict) and "generated_text" in entity_output:
|
257 |
+
result = entity_output["generated_text"].strip()
|
258 |
+
# Split by lines and clean up
|
259 |
+
entities = [e.strip() for e in result.split('\n') if e.strip()]
|
260 |
+
return entities[:5] # Limit to 5 entities
|
261 |
+
|
262 |
+
logger.error(f"Failed to extract key entities: {entity_output}")
|
263 |
+
return []
|
264 |
+
|
265 |
+
# New tool: Meta-analyze across entities
|
266 |
+
def tool_meta_analyze(entity_insights: Dict[str, list], prompt: str) -> str:
|
267 |
+
if not entity_insights:
|
268 |
+
return "No entity insights to analyze."
|
269 |
+
|
270 |
+
meta_input = f"Perform a meta-analysis across these different entities related to the prompt: '{prompt}'\n\n"
|
271 |
+
|
272 |
+
for entity, insights in entity_insights.items():
|
273 |
+
if insights:
|
274 |
+
meta_input += f"\n--- {entity} ---\n" + insights[-1] + "\n" # Just use the latest insight for each entity
|
275 |
+
|
276 |
+
meta_input += "\nProvide a high-level synthesis that identifies:\n1. Common themes across entities\n2. Important differences\n3. How these entities interact or influence each other\n4. The broader implications for the original research question"
|
277 |
+
|
278 |
+
meta_output = hf_inference(MAIN_LLM_ENDPOINT, meta_input)
|
279 |
+
|
280 |
+
if isinstance(meta_output, dict) and "generated_text" in meta_output:
|
281 |
+
return meta_output["generated_text"].strip()
|
282 |
+
|
283 |
+
logger.error(f"Failed to perform meta-analysis: {meta_output}")
|
284 |
+
return "Could not generate a meta-analysis due to an error."
|
285 |
+
|
286 |
+
# Update tools dictionary with enhanced functionality
|
287 |
+
tools = {
|
288 |
+
"search_web": {
|
289 |
+
"function": tool_search_web,
|
290 |
+
"description": "Searches the web for information.",
|
291 |
+
"parameters": {
|
292 |
+
"query": {"type": "string", "description": "The search query."},
|
293 |
+
"num_results": {"type": "integer", "description": "Number of results to return."},
|
294 |
+
"time_filter": {"type": "string", "description": "Optional time filter (d, w, m, y)."},
|
295 |
+
"region": {"type": "string", "description": "Optional region code."},
|
296 |
+
"language": {"type": "string", "description": "Optional language code."}
|
297 |
+
},
|
298 |
+
},
|
299 |
+
"reason": {
|
300 |
+
"function": tool_reason,
|
301 |
+
"description": "Analyzes and reasons about information.",
|
302 |
+
"parameters": {
|
303 |
+
"prompt": {"type": "string", "description": "The original prompt."},
|
304 |
+
"search_results": {"type": "array", "description": "Search results to analyze."},
|
305 |
+
"reasoning_context": {"type": "array", "description": "Previous reasoning outputs."},
|
306 |
+
"critique": {"type": "string", "description": "Recent critique to address."},
|
307 |
+
"focus_areas": {"type": "array", "description": "Specific aspects to focus on."}
|
308 |
+
},
|
309 |
+
},
|
310 |
+
"summarize": {
|
311 |
+
"function": tool_summarize,
|
312 |
+
"description": "Synthesizes insights into a cohesive summary.",
|
313 |
+
"parameters": {
|
314 |
+
"insights": {"type": "array", "description": "Insights to summarize."},
|
315 |
+
"prompt": {"type": "string", "description": "The original research prompt."},
|
316 |
+
"contradictions": {"type": "array", "description": "Specific contradictions to address."}
|
317 |
+
},
|
318 |
+
},
|
319 |
+
"generate_search_query": {
|
320 |
+
"function": tool_generate_search_query,
|
321 |
+
"description": "Generates an optimized search query",
|
322 |
+
"parameters":{
|
323 |
+
"prompt": {"type": "string", "description": "The original user prompt."},
|
324 |
+
"previous_queries": {"type": "array", "description": "Previously used search queries."},
|
325 |
+
"failed_queries": {"type": "array", "description": "Queries that didn't yield good results."},
|
326 |
+
"focus_areas": {"type": "array", "description": "Specific aspects to focus on."}
|
327 |
+
}
|
328 |
+
},
|
329 |
+
"critique_reasoning": {
|
330 |
+
"function": tool_critique_reasoning,
|
331 |
+
"description": "Critically evaluates reasoning output.",
|
332 |
+
"parameters": {
|
333 |
+
"reasoning_output": {"type": "string", "description": "The reasoning output to critique."},
|
334 |
+
"prompt": {"type": "string", "description": "The original prompt."},
|
335 |
+
"previous_critiques": {"type": "array", "description": "Previous critique outputs."}
|
336 |
+
},
|
337 |
+
},
|
338 |
+
"identify_contradictions": {
|
339 |
+
"function": tool_identify_contradictions,
|
340 |
+
"description": "Identifies contradictions across multiple insights.",
|
341 |
+
"parameters": {
|
342 |
+
"insights": {"type": "array", "description": "Collection of insights to analyze for contradictions."},
|
343 |
+
},
|
344 |
+
},
|
345 |
+
"identify_focus_areas": {
|
346 |
+
"function": tool_identify_focus_areas,
|
347 |
+
"description": "Identifies specific aspects that need further investigation.",
|
348 |
+
"parameters": {
|
349 |
+
"prompt": {"type": "string", "description": "The original research prompt."},
|
350 |
+
"insights": {"type": "array", "description": "Existing insights to build upon."},
|
351 |
+
"failed_areas": {"type": "array", "description": "Previously tried areas that yielded poor results."}
|
352 |
+
},
|
353 |
+
},
|
354 |
+
"extract_key_entities": {
|
355 |
+
"function": tool_extract_key_entities,
|
356 |
+
"description": "Extracts key entities from the prompt for focused research.",
|
357 |
+
"parameters": {
|
358 |
+
"prompt": {"type": "string", "description": "The original research prompt."}
|
359 |
+
},
|
360 |
+
},
|
361 |
+
"meta_analyze": {
|
362 |
+
"function": tool_meta_analyze,
|
363 |
+
"description": "Performs meta-analysis across entity-specific insights.",
|
364 |
+
"parameters": {
|
365 |
+
"entity_insights": {"type": "object", "description": "Dictionary mapping entities to their insights."},
|
366 |
+
"prompt": {"type": "string", "description": "The original research prompt."}
|
367 |
+
},
|
368 |
+
}
|
369 |
+
}
|
370 |
+
|
371 |
+
def create_prompt(task_description, user_input, available_tools, context):
|
372 |
+
prompt = f"""{task_description}
|
373 |
+
|
374 |
+
User Input:
|
375 |
+
{user_input}
|
376 |
+
|
377 |
+
Available Tools:
|
378 |
"""
|
379 |
+
for tool_name, tool_data in available_tools.items():
|
380 |
+
prompt += f"- {tool_name}: {tool_data['description']}\n"
|
381 |
+
prompt += " Parameters:\n"
|
382 |
+
for param_name, param_data in tool_data["parameters"].items():
|
383 |
+
prompt += f" - {param_name} ({param_data['type']}): {param_data['description']}\n"
|
384 |
+
|
385 |
+
# Only include most recent context items to avoid exceeding context limits
|
386 |
+
recent_context = context[-MAX_CONTEXT_ITEMS:] if len(context) > MAX_CONTEXT_ITEMS else context
|
387 |
+
|
388 |
+
prompt += "\nContext (most recent items):\n"
|
389 |
+
for item in recent_context:
|
390 |
+
prompt += f"- {item}\n"
|
391 |
+
|
392 |
+
prompt += """
|
393 |
+
Instructions:
|
394 |
+
Select the BEST tool and parameters for the current research stage. Output valid JSON. If no tool is appropriate, respond with {}.
|
395 |
+
Only use provided tools. Be strategic about which tool to use next based on the research progress so far.
|
396 |
+
|
397 |
+
Example:
|
398 |
+
{"tool": "search_web", "parameters": {"query": "Eiffel Tower location"}}
|
399 |
+
|
400 |
+
Output:
|
401 |
"""
|
402 |
+
return prompt
|
403 |
|
404 |
+
def deep_research(prompt):
|
405 |
+
task_description = "You are an advanced research assistant that can perform deep, multi-stage analysis. Use available tools iteratively, focus on different aspects, follow promising leads, and critically evaluate your findings."
|
406 |
+
context = []
|
407 |
+
all_insights = []
|
408 |
+
entity_specific_insights = {}
|
409 |
+
intermediate_output = ""
|
410 |
+
previous_queries = []
|
411 |
+
failed_queries = []
|
412 |
+
reasoning_context = []
|
413 |
+
previous_critiques = []
|
414 |
+
focus_areas = []
|
415 |
+
failed_areas = []
|
416 |
+
seen_snippets = set()
|
417 |
+
contradictions = []
|
418 |
+
research_session_id = str(uuid4())
|
419 |
+
|
420 |
+
# Start with entity extraction for multi-pronged research
|
421 |
+
key_entities = tool_extract_key_entities(prompt=prompt)
|
422 |
+
if key_entities:
|
423 |
+
context.append(f"Identified key entities: {key_entities}")
|
424 |
+
intermediate_output += f"Identified key entities for focused research: {key_entities}\n"
|
425 |
+
|
426 |
+
# Tracking progress for each entity
|
427 |
+
entity_progress = {entity: {'queries': [], 'insights': []} for entity in key_entities}
|
428 |
+
entity_progress['general'] = {'queries': [], 'insights': []} # For general research not tied to specific entities
|
429 |
+
|
430 |
+
for i in range(MAX_ITERATIONS):
|
431 |
+
# Decide which entity to focus on this iteration, or general research
|
432 |
+
if key_entities and i > 0:
|
433 |
+
# Simple round-robin for entities, with general research every few iterations
|
434 |
+
entities_to_process = key_entities + ['general']
|
435 |
+
current_entity = entities_to_process[i % len(entities_to_process)]
|
436 |
+
else:
|
437 |
+
current_entity = 'general'
|
438 |
+
|
439 |
+
context.append(f"Current focus: {current_entity}")
|
440 |
+
|
441 |
+
# First iteration: general query and initial research
|
442 |
+
if i == 0:
|
443 |
+
initial_query = tool_generate_search_query(prompt=prompt)
|
444 |
+
if initial_query:
|
445 |
+
previous_queries.append(initial_query)
|
446 |
+
entity_progress['general']['queries'].append(initial_query)
|
447 |
+
search_results = tool_search_web(query=initial_query)
|
448 |
+
filtered_search_results = filter_results(search_results, prompt)
|
449 |
+
|
450 |
+
for result in filtered_search_results:
|
451 |
+
seen_snippets.add(result['snippet'])
|
452 |
+
|
453 |
+
if filtered_search_results:
|
454 |
+
context.append(f"Initial Search Results: {len(filtered_search_results)} items found")
|
455 |
+
reasoning_output = tool_reason(prompt, filtered_search_results)
|
456 |
+
if reasoning_output:
|
457 |
+
all_insights.append(reasoning_output)
|
458 |
+
entity_progress['general']['insights'].append(reasoning_output)
|
459 |
+
reasoning_context.append(reasoning_output)
|
460 |
+
context.append(f"Initial Reasoning: {reasoning_output[:200]}...")
|
461 |
+
else:
|
462 |
+
failed_queries.append(initial_query)
|
463 |
+
context.append(f"Initial query yielded no relevant results: {initial_query}")
|
464 |
+
|
465 |
+
# Generate current entity-specific query if applicable
|
466 |
+
elif current_entity != 'general':
|
467 |
+
entity_query = tool_generate_search_query(
|
468 |
+
prompt=f"{prompt} focusing specifically on {current_entity}",
|
469 |
+
previous_queries=entity_progress[current_entity]['queries'],
|
470 |
+
focus_areas=focus_areas
|
471 |
+
)
|
472 |
+
|
473 |
+
if entity_query:
|
474 |
+
previous_queries.append(entity_query)
|
475 |
+
entity_progress[current_entity]['queries'].append(entity_query)
|
476 |
+
|
477 |
+
# Search with entity focus
|
478 |
+
search_results = tool_search_web(query=entity_query)
|
479 |
+
filtered_search_results = filter_results(search_results,
|
480 |
+
f"{prompt} {current_entity}",
|
481 |
+
previous_snippets=seen_snippets)
|
482 |
+
|
483 |
+
# Update seen snippets
|
484 |
+
for result in filtered_search_results:
|
485 |
+
seen_snippets.add(result['snippet'])
|
486 |
+
|
487 |
+
if filtered_search_results:
|
488 |
+
context.append(f"Entity Search for {current_entity}: {len(filtered_search_results)} results")
|
489 |
+
|
490 |
+
# Get entity-specific reasoning
|
491 |
+
entity_reasoning = tool_reason(
|
492 |
+
prompt=f"{prompt} focusing on {current_entity}",
|
493 |
+
search_results=filtered_search_results,
|
494 |
+
reasoning_context=entity_progress[current_entity]['insights'],
|
495 |
+
focus_areas=focus_areas
|
496 |
+
)
|
497 |
+
|
498 |
+
if entity_reasoning:
|
499 |
+
all_insights.append(entity_reasoning)
|
500 |
+
entity_progress[current_entity]['insights'].append(entity_reasoning)
|
501 |
+
|
502 |
+
# Store in entity-specific insights dictionary for meta-analysis
|
503 |
+
if current_entity not in entity_specific_insights:
|
504 |
+
entity_specific_insights[current_entity] = []
|
505 |
+
entity_specific_insights[current_entity].append(entity_reasoning)
|
506 |
+
|
507 |
+
context.append(f"Reasoning about {current_entity}: {entity_reasoning[:200]}...")
|
508 |
+
else:
|
509 |
+
failed_queries.append(entity_query)
|
510 |
+
context.append(f"Entity query for {current_entity} yielded no relevant results")
|
511 |
+
|
512 |
+
# Generate LLM decision for next tool
|
513 |
+
llm_prompt = create_prompt(task_description, prompt, tools, context)
|
514 |
+
llm_response = hf_inference(MAIN_LLM_ENDPOINT, llm_prompt)
|
515 |
+
|
516 |
+
if isinstance(llm_response, dict) and "error" in llm_response:
|
517 |
+
intermediate_output += f"LLM Error: {llm_response['error']}\n"
|
518 |
+
continue
|
519 |
+
|
520 |
+
if not isinstance(llm_response, dict) or "generated_text" not in llm_response:
|
521 |
+
intermediate_output += "Error: Invalid LLM response.\n"
|
522 |
+
continue
|
523 |
|
524 |
+
try:
|
525 |
+
response_text = llm_response["generated_text"].strip()
|
526 |
+
response_json = json.loads(response_text)
|
527 |
+
intermediate_output += f"Iteration {i+1} - Focus: {current_entity} - Action: {response_text}\n"
|
528 |
+
except json.JSONDecodeError:
|
529 |
+
intermediate_output += f"Iteration {i+1} - LLM Response (Invalid JSON): {llm_response['generated_text'][:100]}...\n"
|
530 |
+
context.append(f"Invalid JSON: {llm_response['generated_text'][:100]}...")
|
531 |
+
continue
|
|
|
532 |
|
533 |
+
tool_name = response_json.get("tool")
|
534 |
+
parameters = response_json.get("parameters", {})
|
|
|
|
|
|
|
535 |
|
536 |
+
if not tool_name:
|
537 |
+
if all_insights:
|
538 |
+
# If we have insights but no tool selected, maybe we're done
|
539 |
+
if i > MAX_ITERATIONS // 2: # Only consider ending early after half the iterations
|
540 |
+
break
|
541 |
+
continue
|
542 |
|
543 |
+
if tool_name not in tools:
|
544 |
+
context.append(f"Invalid tool: {tool_name}")
|
545 |
+
intermediate_output += f"Iteration {i + 1} - Invalid tool chosen: {tool_name}\n"
|
546 |
+
continue
|
547 |
|
548 |
+
tool = tools[tool_name]
|
549 |
+
try:
|
550 |
+
intermediate_output += f"Iteration {i+1} - Executing: {tool_name}, Key params: {str(parameters)[:100]}...\n"
|
|
|
|
|
|
|
|
|
|
|
551 |
|
552 |
+
if tool_name == "generate_search_query":
|
553 |
+
parameters['previous_queries'] = previous_queries
|
554 |
+
parameters['failed_queries'] = failed_queries
|
555 |
+
parameters['focus_areas'] = focus_areas
|
556 |
+
result = tool["function"](**parameters)
|
557 |
+
|
558 |
+
if current_entity != 'general':
|
559 |
+
entity_progress[current_entity]['queries'].append(result)
|
560 |
+
|
561 |
+
previous_queries.append(result)
|
562 |
+
|
563 |
+
elif tool_name == "reason":
|
564 |
+
if current_entity != 'general' and 'reasoning_context' not in parameters:
|
565 |
+
parameters['reasoning_context'] = entity_progress[current_entity]['insights']
|
566 |
+
elif 'reasoning_context' not in parameters:
|
567 |
+
parameters['reasoning_context'] = reasoning_context[:]
|
568 |
+
|
569 |
+
if 'prompt' not in parameters:
|
570 |
+
if current_entity != 'general':
|
571 |
+
parameters['prompt'] = f"{prompt} focusing on {current_entity}"
|
572 |
+
else:
|
573 |
+
parameters['prompt'] = prompt
|
574 |
+
|
575 |
+
if 'search_results' not in parameters:
|
576 |
+
parameters['search_results'] = []
|
577 |
+
|
578 |
+
if 'focus_areas' not in parameters and focus_areas:
|
579 |
+
parameters['focus_areas'] = focus_areas
|
580 |
+
|
581 |
+
result = tool["function"](**parameters)
|
582 |
+
|
583 |
+
if current_entity != 'general':
|
584 |
+
entity_progress[current_entity]['insights'].append(result)
|
585 |
+
if current_entity not in entity_specific_insights:
|
586 |
+
entity_specific_insights[current_entity] = []
|
587 |
+
entity_specific_insights[current_entity].append(result)
|
588 |
+
else:
|
589 |
+
reasoning_context.append(result)
|
590 |
+
|
591 |
+
all_insights.append(result)
|
592 |
+
|
593 |
+
elif tool_name == "search_web":
|
594 |
+
result = tool_search_web(**parameters)
|
595 |
+
filtered_result = filter_results(result,
|
596 |
+
prompt if current_entity == 'general' else f"{prompt} {current_entity}",
|
597 |
+
previous_snippets=seen_snippets)
|
598 |
+
|
599 |
+
# Update seen snippets
|
600 |
+
for r in filtered_result:
|
601 |
+
seen_snippets.add(r['snippet'])
|
602 |
+
|
603 |
+
result = filtered_result
|
604 |
+
|
605 |
+
if not result:
|
606 |
+
query = parameters.get('query', '')
|
607 |
+
if query:
|
608 |
+
failed_queries.append(query)
|
609 |
+
|
610 |
+
elif tool_name == "critique_reasoning":
|
611 |
+
if 'previous_critiques' not in parameters:
|
612 |
+
parameters['previous_critiques'] = previous_critiques
|
613 |
+
|
614 |
+
if all_insights:
|
615 |
+
if 'reasoning_output' not in parameters:
|
616 |
+
parameters['reasoning_output'] = all_insights[-1]
|
617 |
+
if 'prompt' not in parameters:
|
618 |
+
parameters['prompt'] = prompt
|
619 |
+
|
620 |
+
result = tool["function"](**parameters)
|
621 |
+
previous_critiques.append(result)
|
622 |
+
context.append(f"Critique: {result[:200]}...")
|
623 |
+
else:
|
624 |
+
result = "No reasoning to critique yet."
|
625 |
+
|
626 |
+
elif tool_name == "identify_contradictions":
|
627 |
+
result = tool["function"](**parameters)
|
628 |
+
if result:
|
629 |
+
contradictions = result # Store for later use in summarization
|
630 |
+
context.append(f"Identified contradictions: {result}")
|
631 |
+
|
632 |
+
elif tool_name == "identify_focus_areas":
|
633 |
+
if 'failed_areas' not in parameters:
|
634 |
+
parameters['failed_areas'] = failed_areas
|
635 |
+
result = tool["function"](**parameters)
|
636 |
+
if result:
|
637 |
+
# Update focus areas, but keep track of ones that didn't yield results
|
638 |
+
old_focus = set(focus_areas)
|
639 |
+
focus_areas = result
|
640 |
+
failed_areas.extend([area for area in old_focus if area not in result])
|
641 |
+
context.append(f"New focus areas: {result}")
|
642 |
+
|
643 |
+
elif tool_name == "meta_analyze":
|
644 |
+
if 'entity_insights' not in parameters:
|
645 |
+
parameters['entity_insights'] = entity_specific_insights
|
646 |
+
if 'prompt' not in parameters:
|
647 |
+
parameters['prompt'] = prompt
|
648 |
+
result = tool["function"](**parameters)
|
649 |
+
if result:
|
650 |
+
all_insights.append(result) # Add meta-analysis to insights
|
651 |
+
context.append(f"Meta-analysis across entities: {result[:200]}...")
|
652 |
+
|
653 |
+
else:
|
654 |
+
result = tool["function"](**parameters)
|
655 |
|
656 |
+
# Truncate very long results for the intermediate output
|
657 |
+
result_str = str(result)
|
658 |
+
if len(result_str) > 500:
|
659 |
+
result_str = result_str[:500] + "..."
|
660 |
+
|
661 |
+
intermediate_output += f"Iteration {i+1} - Result: {result_str}\n"
|
662 |
+
|
663 |
+
# Add truncated result to context
|
664 |
+
result_context = result_str
|
665 |
+
if len(result_str) > 300: # Even shorter for context
|
666 |
+
result_context = result_str[:300] + "..."
|
667 |
+
context.append(f"Used: {tool_name}, Result: {result_context}")
|
668 |
|
669 |
+
except Exception as e:
|
670 |
+
logger.error(f"Error with {tool_name}: {str(e)}")
|
671 |
+
context.append(f"Error with {tool_name}: {str(e)}")
|
672 |
+
intermediate_output += f"Iteration {i+1} - Error: {str(e)}\n"
|
673 |
+
continue
|
674 |
+
|
675 |
+
# Perform final meta-analysis if we have entity-specific insights
|
676 |
+
if len(entity_specific_insights) > 1 and len(all_insights) > 2:
|
677 |
+
meta_analysis = tool_meta_analyze(entity_insights=entity_specific_insights, prompt=prompt)
|
678 |
+
if meta_analysis:
|
679 |
+
all_insights.append(meta_analysis)
|
680 |
+
intermediate_output += f"Final Meta-Analysis: {meta_analysis[:500]}...\n"
|
681 |
+
|
682 |
+
# Generate the final summary
|
683 |
+
if all_insights:
|
684 |
+
final_result = tool_summarize(all_insights, prompt, contradictions)
|
685 |
+
else:
|
686 |
+
final_result = "Could not find meaningful information despite multiple attempts."
|
687 |
+
|
688 |
+
# Prepare the full output with detailed tracking
|
689 |
+
full_output = f"**Research Prompt:** {prompt}\n\n"
|
690 |
+
|
691 |
+
if key_entities:
|
692 |
+
full_output += f"**Key Entities Identified:** {', '.join(key_entities)}\n\n"
|
693 |
+
|
694 |
+
full_output += "**Research Process:**\n" + intermediate_output + "\n"
|
695 |
+
|
696 |
+
if contradictions:
|
697 |
+
full_output += "**Contradictions Identified:**\n"
|
698 |
+
for i, contradiction in enumerate(contradictions, 1):
|
699 |
+
full_output += f"{i}. {contradiction}\n"
|
700 |
+
full_output += "\n"
|
701 |
+
|
702 |
+
full_output += f"**Final Analysis:**\n{final_result}\n\n"
|
703 |
+
|
704 |
+
# Add session info for potential follow-up
|
705 |
+
full_output += f"Research Session ID: {research_session_id}\n"
|
706 |
+
full_output += f"Completed at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
|
707 |
+
full_output += f"Total iterations: {i+1}\n"
|
708 |
+
full_output += f"Total insights generated: {len(all_insights)}\n"
|
709 |
+
|
710 |
+
return full_output
|
711 |
+
|
712 |
+
# Create CSS for a more professional look
|
713 |
+
custom_css = """
|
714 |
+
.gradio-container {
|
715 |
+
background-color: #f7f9fc;
|
716 |
+
}
|
717 |
+
.output-box {
|
718 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
719 |
+
line-height: 1.5;
|
720 |
+
}
|
721 |
+
h3 {
|
722 |
+
color: #2c3e50;
|
723 |
+
font-weight: 600;
|
724 |
+
}
|
725 |
+
.footer {
|
726 |
+
text-align: center;
|
727 |
+
margin-top: 20px;
|
728 |
+
color: #7f8c8d;
|
729 |
+
font-size: 0.9em;
|
730 |
+
}
|
731 |
"""
|
732 |
+
|
733 |
+
# Create the Gradio interface with enhanced UI
|
734 |
+
iface = gr.Interface(
|
735 |
+
fn=deep_research,
|
736 |
+
inputs=[
|
737 |
+
gr.Textbox(lines=5, placeholder="Enter your research question...", label="Research Question")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
738 |
],
|
739 |
+
outputs=gr.Textbox(lines=30, placeholder="Research results will appear here...", label="Research Results", elem_classes=["output-box"]),
|
740 |
+
title="Advanced Multi-Stage Research Assistant",
|
741 |
+
description="""This tool performs deep, multi-faceted research by:
|
742 |
+
1. Breaking down complex topics into key entities and aspects
|
743 |
+
2. Iteratively searching, reasoning, and critiquing findings
|
744 |
+
3. Exploring different perspectives and addressing contradictions
|
745 |
+
4. Synthesizing insights across multiple information sources""",
|
746 |
+
examples=[
|
747 |
+
["What are the key factors affecting urban tree survival and how do they vary between developing and developed countries?"],
|
748 |
+
["Compare and contrast the economic policies of China and the United States over the past two decades, analyzing their impacts on global trade."],
|
749 |
+
["What are the most promising approaches to quantum computing and what are their respective advantages and limitations?"],
|
750 |
+
["Analyze the environmental and social impacts of lithium mining for electric vehicle batteries."],
|
751 |
+
["How has artificial intelligence influenced medical diagnostics in the past five years, and what are the ethical considerations?"]
|
752 |
+
],
|
753 |
+
theme="default",
|
754 |
+
css=custom_css,
|
755 |
+
allow_flagging=False,
|
756 |
+
analytics_enabled=False,
|
757 |
)
|
758 |
|
759 |
+
# Add footer with additional information
|
760 |
+
footer_html = """
|
761 |
+
<div class="footer">
|
762 |
+
<p>This research assistant performs advanced multi-stage analysis using natural language processing and web search.</p>
|
763 |
+
<p>Results should be verified with additional sources. Not suitable for medical, legal, or emergency use.</p>
|
764 |
+
</div>
|
765 |
+
"""
|
766 |
|
767 |
+
# Launch the interface
|
768 |
+
iface.launch(share=False)
|