Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
import requests
|
3 |
import os
|
4 |
import time
|
5 |
import json
|
6 |
import re
|
7 |
from uuid import uuid4
|
8 |
from datetime import datetime
|
9 |
-
from duckduckgo_search import DDGS
|
10 |
from sentence_transformers import SentenceTransformer, util
|
11 |
from typing import List, Dict, Any, Optional, Union, Tuple
|
12 |
import logging
|
13 |
-
import pandas as pd
|
14 |
import numpy as np
|
15 |
from collections import deque
|
|
|
16 |
|
17 |
# Set up logging
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
@@ -23,50 +22,54 @@ HF_API_KEY = os.environ.get("HF_API_KEY")
|
|
23 |
if not HF_API_KEY:
|
24 |
raise ValueError("Please set the HF_API_KEY environment variable.")
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
REASONING_LLM_ENDPOINT = "https://router.huggingface.co/hf-inference/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B/v1/chat/completions" # Can be the same as main if needed
|
29 |
-
CRITIC_LLM_ENDPOINT = "https://router.huggingface.co/hf-inference/models/Qwen/QwQ-32B-Preview/v1/chat/completions" # Can be the same as main if needed
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
TIMEOUT = 60
|
33 |
RETRY_DELAY = 5
|
34 |
-
NUM_RESULTS = 10
|
35 |
-
SIMILARITY_THRESHOLD = 0.15
|
36 |
-
MAX_CONTEXT_ITEMS = 20
|
37 |
-
MAX_HISTORY_ITEMS = 5
|
38 |
|
39 |
# Load multiple embedding models for different purposes
|
40 |
try:
|
41 |
main_similarity_model = SentenceTransformer('all-mpnet-base-v2')
|
42 |
-
concept_similarity_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
43 |
except Exception as e:
|
44 |
logger.error(f"Failed to load SentenceTransformer models: {e}")
|
45 |
main_similarity_model = None
|
46 |
concept_similarity_model = None
|
47 |
|
48 |
-
def hf_inference(
|
49 |
-
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
|
50 |
-
payload = {"inputs": inputs, "parameters": parameters or {}}
|
51 |
-
|
52 |
for attempt in range(retries):
|
53 |
try:
|
54 |
-
|
55 |
-
response.
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
if attempt == retries - 1:
|
59 |
logger.error(f"Request failed after {retries} retries: {e}")
|
60 |
return {"error": f"Request failed after {retries} retries: {e}"}
|
61 |
-
time.sleep(RETRY_DELAY * (1 + attempt))
|
62 |
return {"error": "Request failed after multiple retries."}
|
63 |
|
64 |
def tool_search_web(query: str, num_results: int = NUM_RESULTS, safesearch: str = "moderate",
|
65 |
time_filter: str = "", region: str = "wt-wt", language: str = "en-us") -> list:
|
66 |
try:
|
67 |
-
with DDGS() as ddgs:
|
68 |
results = [r for r in ddgs.text(query, max_results=num_results, safesearch=safesearch,
|
69 |
-
time=time_filter, region=region, hreflang=language)]
|
70 |
if results:
|
71 |
return [{"title": r["title"], "snippet": r["body"], "url": r["href"]} for r in results]
|
72 |
else:
|
@@ -98,7 +101,7 @@ def tool_reason(prompt: str, search_results: list, reasoning_context: list = [],
|
|
98 |
|
99 |
reasoning_input += "\nProvide a thorough, nuanced analysis that builds upon previous reasoning if applicable. Consider multiple perspectives and potential contradictions in the search results."
|
100 |
|
101 |
-
reasoning_output = hf_inference(
|
102 |
|
103 |
if isinstance(reasoning_output, dict) and "generated_text" in reasoning_output:
|
104 |
return reasoning_output["generated_text"].strip()
|
@@ -111,14 +114,14 @@ def tool_summarize(insights: list, prompt: str, contradictions: list = []) -> st
|
|
111 |
return "No insights to summarize."
|
112 |
|
113 |
summarization_input = f"Synthesize the following insights into a cohesive and comprehensive summary regarding: '{prompt}'\n\n"
|
114 |
-
summarization_input += "\n\n".join(insights[-MAX_HISTORY_ITEMS:])
|
115 |
|
116 |
if contradictions:
|
117 |
summarization_input += "\n\nAddress these specific contradictions:\n" + "\n".join(contradictions)
|
118 |
|
119 |
summarization_input += "\n\nProvide a well-structured summary that:\n1. Presents the main findings\n2. Acknowledges limitations and uncertainties\n3. Highlights areas of consensus and disagreement\n4. Suggests potential directions for further inquiry"
|
120 |
|
121 |
-
summarization_output = hf_inference(
|
122 |
|
123 |
if isinstance(summarization_output, dict) and "generated_text" in summarization_output:
|
124 |
return summarization_output["generated_text"].strip()
|
@@ -127,7 +130,7 @@ def tool_summarize(insights: list, prompt: str, contradictions: list = []) -> st
|
|
127 |
return "Could not generate a summary due to an error."
|
128 |
|
129 |
def tool_generate_search_query(prompt: str, previous_queries: list = [],
|
130 |
-
|
131 |
query_gen_input = f"Generate an effective search query for the following prompt: {prompt}\n"
|
132 |
|
133 |
if previous_queries:
|
@@ -143,7 +146,7 @@ def tool_generate_search_query(prompt: str, previous_queries: list = [],
|
|
143 |
query_gen_input += "Refine the search query based on previous queries, aiming for more precise results.\n"
|
144 |
query_gen_input += "Search Query:"
|
145 |
|
146 |
-
query_gen_output = hf_inference(
|
147 |
|
148 |
if isinstance(query_gen_output, dict) and 'generated_text' in query_gen_output:
|
149 |
return query_gen_output['generated_text'].strip()
|
@@ -152,7 +155,7 @@ def tool_generate_search_query(prompt: str, previous_queries: list = [],
|
|
152 |
return ""
|
153 |
|
154 |
def tool_critique_reasoning(reasoning_output: str, prompt: str,
|
155 |
-
|
156 |
critique_input = f"Critically evaluate the following reasoning output in relation to the prompt:\n\nPrompt: {prompt}\n\nReasoning: {reasoning_output}\n\n"
|
157 |
|
158 |
if previous_critiques:
|
@@ -160,7 +163,7 @@ def tool_critique_reasoning(reasoning_output: str, prompt: str,
|
|
160 |
|
161 |
critique_input += "Identify any flaws, biases, logical fallacies, unsupported claims, or areas for improvement. Be specific and constructive. Suggest concrete ways to enhance the reasoning."
|
162 |
|
163 |
-
critique_output = hf_inference(
|
164 |
|
165 |
if isinstance(critique_output, dict) and "generated_text" in critique_output:
|
166 |
return critique_output["generated_text"].strip()
|
@@ -175,14 +178,13 @@ def tool_identify_contradictions(insights: list) -> list:
|
|
175 |
contradiction_input = "Identify specific contradictions in these insights:\n\n" + "\n\n".join(insights[-MAX_HISTORY_ITEMS:])
|
176 |
contradiction_input += "\n\nList each contradiction as a separate numbered point. If no contradictions exist, respond with 'No contradictions found.'"
|
177 |
|
178 |
-
contradiction_output = hf_inference(
|
179 |
|
180 |
if isinstance(contradiction_output, dict) and "generated_text" in contradiction_output:
|
181 |
result = contradiction_output["generated_text"].strip()
|
182 |
if result == "No contradictions found.":
|
183 |
return []
|
184 |
|
185 |
-
# Extract numbered contradictions
|
186 |
contradictions = re.findall(r'\d+\.\s+(.*?)(?=\d+\.|$)', result, re.DOTALL)
|
187 |
return [c.strip() for c in contradictions if c.strip()]
|
188 |
|
@@ -190,24 +192,23 @@ def tool_identify_contradictions(insights: list) -> list:
|
|
190 |
return []
|
191 |
|
192 |
def tool_identify_focus_areas(prompt: str, insights: list = [],
|
193 |
-
|
194 |
focus_input = f"Based on this research prompt: '{prompt}'\n\n"
|
195 |
|
196 |
if insights:
|
197 |
-
focus_input += "And these existing insights:\n" + "\n".join(insights[-3:]) + "\n\n"
|
198 |
|
199 |
if failed_areas:
|
200 |
focus_input += f"These focus areas didn't yield useful results: {', '.join(failed_areas)}\n\n"
|
201 |
|
202 |
focus_input += "Identify 2-3 specific aspects that should be investigated further to get a complete understanding. Be precise and prioritize underexplored areas."
|
203 |
|
204 |
-
focus_output = hf_inference(
|
205 |
|
206 |
if isinstance(focus_output, dict) and "generated_text" in focus_output:
|
207 |
result = focus_output["generated_text"].strip()
|
208 |
-
# Extract areas, assuming they're listed with numbers, bullets, or in separate lines
|
209 |
areas = re.findall(r'(?:^|\n)(?:\d+\.|\*|\-)\s*(.*?)(?=(?:\n(?:\d+\.|\*|\-|$))|$)', result)
|
210 |
-
return [area.strip() for area in areas if area.strip()][:3]
|
211 |
|
212 |
logger.error(f"Failed to identify focus areas: {focus_output}")
|
213 |
return []
|
@@ -220,7 +221,6 @@ def filter_results(search_results, prompt, previous_snippets=None):
|
|
220 |
prompt_embedding = main_similarity_model.encode(prompt, convert_to_tensor=True)
|
221 |
filtered_results = []
|
222 |
|
223 |
-
# Keep track of snippets we've already seen
|
224 |
seen_snippets = set()
|
225 |
if previous_snippets:
|
226 |
seen_snippets.update(previous_snippets)
|
@@ -228,7 +228,6 @@ def filter_results(search_results, prompt, previous_snippets=None):
|
|
228 |
for result in search_results:
|
229 |
combined_text = result['title'] + " " + result['snippet']
|
230 |
|
231 |
-
# Skip if we've seen this exact snippet before
|
232 |
if result['snippet'] in seen_snippets:
|
233 |
continue
|
234 |
|
@@ -240,7 +239,6 @@ def filter_results(search_results, prompt, previous_snippets=None):
|
|
240 |
filtered_results.append(result)
|
241 |
seen_snippets.add(result['snippet'])
|
242 |
|
243 |
-
# Sort by relevance score
|
244 |
filtered_results.sort(key=lambda x: x.get('relevance_score', 0), reverse=True)
|
245 |
return filtered_results
|
246 |
|
@@ -248,22 +246,19 @@ def filter_results(search_results, prompt, previous_snippets=None):
|
|
248 |
logger.error(f"Error during filtering: {e}")
|
249 |
return search_results
|
250 |
|
251 |
-
# New tool: Extract entities for focused research
|
252 |
def tool_extract_key_entities(prompt: str) -> list:
|
253 |
entity_input = f"Extract the key entities (people, organizations, concepts, technologies, etc.) from this research prompt that should be investigated individually:\n\n{prompt}\n\nList only the most important 3-5 entities, one per line."
|
254 |
|
255 |
-
entity_output = hf_inference(
|
256 |
|
257 |
if isinstance(entity_output, dict) and "generated_text" in entity_output:
|
258 |
result = entity_output["generated_text"].strip()
|
259 |
-
# Split by lines and clean up
|
260 |
entities = [e.strip() for e in result.split('\n') if e.strip()]
|
261 |
-
return entities[:5]
|
262 |
|
263 |
logger.error(f"Failed to extract key entities: {entity_output}")
|
264 |
return []
|
265 |
|
266 |
-
# New tool: Meta-analyze across entities
|
267 |
def tool_meta_analyze(entity_insights: Dict[str, list], prompt: str) -> str:
|
268 |
if not entity_insights:
|
269 |
return "No entity insights to analyze."
|
@@ -272,11 +267,11 @@ def tool_meta_analyze(entity_insights: Dict[str, list], prompt: str) -> str:
|
|
272 |
|
273 |
for entity, insights in entity_insights.items():
|
274 |
if insights:
|
275 |
-
meta_input += f"\n--- {entity} ---\n" + insights[-1] + "\n"
|
276 |
|
277 |
meta_input += "\nProvide a high-level synthesis that identifies:\n1. Common themes across entities\n2. Important differences\n3. How these entities interact or influence each other\n4. The broader implications for the original research question"
|
278 |
|
279 |
-
meta_output = hf_inference(
|
280 |
|
281 |
if isinstance(meta_output, dict) and "generated_text" in meta_output:
|
282 |
return meta_output["generated_text"].strip()
|
@@ -284,7 +279,6 @@ def tool_meta_analyze(entity_insights: Dict[str, list], prompt: str) -> str:
|
|
284 |
logger.error(f"Failed to perform meta-analysis: {meta_output}")
|
285 |
return "Could not generate a meta-analysis due to an error."
|
286 |
|
287 |
-
# Update tools dictionary with enhanced functionality
|
288 |
tools = {
|
289 |
"search_web": {
|
290 |
"function": tool_search_web,
|
@@ -371,10 +365,8 @@ tools = {
|
|
371 |
|
372 |
def create_prompt(task_description, user_input, available_tools, context):
|
373 |
prompt = f"""{task_description}
|
374 |
-
|
375 |
User Input:
|
376 |
{user_input}
|
377 |
-
|
378 |
Available Tools:
|
379 |
"""
|
380 |
for tool_name, tool_data in available_tools.items():
|
@@ -383,7 +375,6 @@ Available Tools:
|
|
383 |
for param_name, param_data in tool_data["parameters"].items():
|
384 |
prompt += f" - {param_name} ({param_data['type']}): {param_data['description']}\n"
|
385 |
|
386 |
-
# Only include most recent context items to avoid exceeding context limits
|
387 |
recent_context = context[-MAX_CONTEXT_ITEMS:] if len(context) > MAX_CONTEXT_ITEMS else context
|
388 |
|
389 |
prompt += "\nContext (most recent items):\n"
|
@@ -394,10 +385,8 @@ Available Tools:
|
|
394 |
Instructions:
|
395 |
Select the BEST tool and parameters for the current research stage. Output valid JSON. If no tool is appropriate, respond with {}.
|
396 |
Only use provided tools. Be strategic about which tool to use next based on the research progress so far.
|
397 |
-
|
398 |
Example:
|
399 |
{"tool": "search_web", "parameters": {"query": "Eiffel Tower location"}}
|
400 |
-
|
401 |
Output:
|
402 |
"""
|
403 |
return prompt
|
@@ -418,20 +407,16 @@ def deep_research(prompt):
|
|
418 |
contradictions = []
|
419 |
research_session_id = str(uuid4())
|
420 |
|
421 |
-
# Start with entity extraction for multi-pronged research
|
422 |
key_entities = tool_extract_key_entities(prompt=prompt)
|
423 |
if key_entities:
|
424 |
context.append(f"Identified key entities: {key_entities}")
|
425 |
intermediate_output += f"Identified key entities for focused research: {key_entities}\n"
|
426 |
|
427 |
-
# Tracking progress for each entity
|
428 |
entity_progress = {entity: {'queries': [], 'insights': []} for entity in key_entities}
|
429 |
-
entity_progress['general'] = {'queries': [], 'insights': []}
|
430 |
|
431 |
for i in range(MAX_ITERATIONS):
|
432 |
-
# Decide which entity to focus on this iteration, or general research
|
433 |
if key_entities and i > 0:
|
434 |
-
# Simple round-robin for entities, with general research every few iterations
|
435 |
entities_to_process = key_entities + ['general']
|
436 |
current_entity = entities_to_process[i % len(entities_to_process)]
|
437 |
else:
|
@@ -439,7 +424,6 @@ def deep_research(prompt):
|
|
439 |
|
440 |
context.append(f"Current focus: {current_entity}")
|
441 |
|
442 |
-
# First iteration: general query and initial research
|
443 |
if i == 0:
|
444 |
initial_query = tool_generate_search_query(prompt=prompt)
|
445 |
if initial_query:
|
@@ -463,7 +447,6 @@ def deep_research(prompt):
|
|
463 |
failed_queries.append(initial_query)
|
464 |
context.append(f"Initial query yielded no relevant results: {initial_query}")
|
465 |
|
466 |
-
# Generate current entity-specific query if applicable
|
467 |
elif current_entity != 'general':
|
468 |
entity_query = tool_generate_search_query(
|
469 |
prompt=f"{prompt} focusing specifically on {current_entity}",
|
@@ -475,20 +458,17 @@ def deep_research(prompt):
|
|
475 |
previous_queries.append(entity_query)
|
476 |
entity_progress[current_entity]['queries'].append(entity_query)
|
477 |
|
478 |
-
# Search with entity focus
|
479 |
search_results = tool_search_web(query=entity_query)
|
480 |
filtered_search_results = filter_results(search_results,
|
481 |
f"{prompt} {current_entity}",
|
482 |
previous_snippets=seen_snippets)
|
483 |
|
484 |
-
# Update seen snippets
|
485 |
for result in filtered_search_results:
|
486 |
seen_snippets.add(result['snippet'])
|
487 |
|
488 |
if filtered_search_results:
|
489 |
context.append(f"Entity Search for {current_entity}: {len(filtered_search_results)} results")
|
490 |
|
491 |
-
# Get entity-specific reasoning
|
492 |
entity_reasoning = tool_reason(
|
493 |
prompt=f"{prompt} focusing on {current_entity}",
|
494 |
search_results=filtered_search_results,
|
@@ -500,7 +480,6 @@ def deep_research(prompt):
|
|
500 |
all_insights.append(entity_reasoning)
|
501 |
entity_progress[current_entity]['insights'].append(entity_reasoning)
|
502 |
|
503 |
-
# Store in entity-specific insights dictionary for meta-analysis
|
504 |
if current_entity not in entity_specific_insights:
|
505 |
entity_specific_insights[current_entity] = []
|
506 |
entity_specific_insights[current_entity].append(entity_reasoning)
|
@@ -510,9 +489,8 @@ def deep_research(prompt):
|
|
510 |
failed_queries.append(entity_query)
|
511 |
context.append(f"Entity query for {current_entity} yielded no relevant results")
|
512 |
|
513 |
-
# Generate LLM decision for next tool
|
514 |
llm_prompt = create_prompt(task_description, prompt, tools, context)
|
515 |
-
llm_response = hf_inference(
|
516 |
|
517 |
if isinstance(llm_response, dict) and "error" in llm_response:
|
518 |
intermediate_output += f"LLM Error: {llm_response['error']}\n"
|
@@ -536,8 +514,7 @@ def deep_research(prompt):
|
|
536 |
|
537 |
if not tool_name:
|
538 |
if all_insights:
|
539 |
-
|
540 |
-
if i > MAX_ITERATIONS // 2: # Only consider ending early after half the iterations
|
541 |
break
|
542 |
continue
|
543 |
|
@@ -597,7 +574,6 @@ def deep_research(prompt):
|
|
597 |
prompt if current_entity == 'general' else f"{prompt} {current_entity}",
|
598 |
previous_snippets=seen_snippets)
|
599 |
|
600 |
-
# Update seen snippets
|
601 |
for r in filtered_result:
|
602 |
seen_snippets.add(r['snippet'])
|
603 |
|
@@ -627,7 +603,7 @@ def deep_research(prompt):
|
|
627 |
elif tool_name == "identify_contradictions":
|
628 |
result = tool["function"](**parameters)
|
629 |
if result:
|
630 |
-
contradictions = result
|
631 |
context.append(f"Identified contradictions: {result}")
|
632 |
|
633 |
elif tool_name == "identify_focus_areas":
|
@@ -635,7 +611,6 @@ def deep_research(prompt):
|
|
635 |
parameters['failed_areas'] = failed_areas
|
636 |
result = tool["function"](**parameters)
|
637 |
if result:
|
638 |
-
# Update focus areas, but keep track of ones that didn't yield results
|
639 |
old_focus = set(focus_areas)
|
640 |
focus_areas = result
|
641 |
failed_areas.extend([area for area in old_focus if area not in result])
|
@@ -648,45 +623,40 @@ def deep_research(prompt):
|
|
648 |
parameters['prompt'] = prompt
|
649 |
result = tool["function"](**parameters)
|
650 |
if result:
|
651 |
-
all_insights.append(result)
|
652 |
context.append(f"Meta-analysis across entities: {result[:200]}...")
|
653 |
|
654 |
else:
|
655 |
result = tool["function"](**parameters)
|
656 |
|
657 |
-
# Truncate very long results for the intermediate output
|
658 |
result_str = str(result)
|
659 |
if len(result_str) > 500:
|
660 |
result_str = result_str[:500] + "..."
|
661 |
|
662 |
intermediate_output += f"Iteration {i+1} - Result: {result_str}\n"
|
663 |
|
664 |
-
# Add truncated result to context
|
665 |
result_context = result_str
|
666 |
-
if len(result_str) > 300:
|
667 |
result_context = result_str[:300] + "..."
|
668 |
context.append(f"Used: {tool_name}, Result: {result_context}")
|
669 |
|
670 |
except Exception as e:
|
671 |
logger.error(f"Error with {tool_name}: {str(e)}")
|
672 |
context.append(f"Error with {tool_name}: {str(e)}")
|
673 |
-
intermediate_output += f"Iteration {i+1} - Error: {str(e)}\n"
|
674 |
continue
|
675 |
|
676 |
-
# Perform final meta-analysis if we have entity-specific insights
|
677 |
if len(entity_specific_insights) > 1 and len(all_insights) > 2:
|
678 |
meta_analysis = tool_meta_analyze(entity_insights=entity_specific_insights, prompt=prompt)
|
679 |
if meta_analysis:
|
680 |
all_insights.append(meta_analysis)
|
681 |
intermediate_output += f"Final Meta-Analysis: {meta_analysis[:500]}...\n"
|
682 |
|
683 |
-
# Generate the final summary
|
684 |
if all_insights:
|
685 |
final_result = tool_summarize(all_insights, prompt, contradictions)
|
686 |
else:
|
687 |
final_result = "Could not find meaningful information despite multiple attempts."
|
688 |
|
689 |
-
# Prepare the full output with detailed tracking
|
690 |
full_output = f"**Research Prompt:** {prompt}\n\n"
|
691 |
|
692 |
if key_entities:
|
@@ -702,7 +672,6 @@ def deep_research(prompt):
|
|
702 |
|
703 |
full_output += f"**Final Analysis:**\n{final_result}\n\n"
|
704 |
|
705 |
-
# Add session info for potential follow-up
|
706 |
full_output += f"Research Session ID: {research_session_id}\n"
|
707 |
full_output += f"Completed at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
|
708 |
full_output += f"Total iterations: {i+1}\n"
|
@@ -752,7 +721,7 @@ iface = gr.Interface(
|
|
752 |
["How has artificial intelligence influenced medical diagnostics in the past five years, and what are the ethical considerations?"]
|
753 |
],
|
754 |
theme="default",
|
755 |
-
cache_examples=False,
|
756 |
css=custom_css,
|
757 |
flagging_mode='never',
|
758 |
analytics_enabled=False,
|
@@ -765,7 +734,7 @@ footer_html = """
|
|
765 |
<p>Results should be verified with additional sources. Not suitable for medical, legal, or emergency use.</p>
|
766 |
</div>
|
767 |
"""
|
768 |
-
|
769 |
|
770 |
# Launch the interface
|
771 |
iface.launch(share=False)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
import time
|
4 |
import json
|
5 |
import re
|
6 |
from uuid import uuid4
|
7 |
from datetime import datetime
|
8 |
+
from duckduckgo_search import DDGS
|
9 |
from sentence_transformers import SentenceTransformer, util
|
10 |
from typing import List, Dict, Any, Optional, Union, Tuple
|
11 |
import logging
|
|
|
12 |
import numpy as np
|
13 |
from collections import deque
|
14 |
+
from huggingface_hub import InferenceClient
|
15 |
|
16 |
# Set up logging
|
17 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
22 |
if not HF_API_KEY:
|
23 |
raise ValueError("Please set the HF_API_KEY environment variable.")
|
24 |
|
25 |
+
# Initialize Hugging Face Inference Client
|
26 |
+
client = InferenceClient(provider="hf-inference", api_key=HF_API_KEY)
|
|
|
|
|
27 |
|
28 |
+
# Model endpoints
|
29 |
+
MAIN_LLM_MODEL = "mistralai/Mistral-Nemo-Instruct-2407"
|
30 |
+
REASONING_LLM_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
31 |
+
CRITIC_LLM_MODEL = "Qwen/QwQ-32B-Preview"
|
32 |
+
|
33 |
+
MAX_ITERATIONS = 12
|
34 |
TIMEOUT = 60
|
35 |
RETRY_DELAY = 5
|
36 |
+
NUM_RESULTS = 10
|
37 |
+
SIMILARITY_THRESHOLD = 0.15
|
38 |
+
MAX_CONTEXT_ITEMS = 20
|
39 |
+
MAX_HISTORY_ITEMS = 5
|
40 |
|
41 |
# Load multiple embedding models for different purposes
|
42 |
try:
|
43 |
main_similarity_model = SentenceTransformer('all-mpnet-base-v2')
|
44 |
+
concept_similarity_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
45 |
except Exception as e:
|
46 |
logger.error(f"Failed to load SentenceTransformer models: {e}")
|
47 |
main_similarity_model = None
|
48 |
concept_similarity_model = None
|
49 |
|
50 |
+
def hf_inference(model_name, prompt, max_tokens=500, retries=5):
|
|
|
|
|
|
|
51 |
for attempt in range(retries):
|
52 |
try:
|
53 |
+
messages = [{"role": "user", "content": prompt}]
|
54 |
+
response = client.chat.completions.create(
|
55 |
+
model=model_name,
|
56 |
+
messages=messages,
|
57 |
+
max_tokens=max_tokens
|
58 |
+
)
|
59 |
+
return {"generated_text": response.choices[0].message.content}
|
60 |
+
except Exception as e:
|
61 |
if attempt == retries - 1:
|
62 |
logger.error(f"Request failed after {retries} retries: {e}")
|
63 |
return {"error": f"Request failed after {retries} retries: {e}"}
|
64 |
+
time.sleep(RETRY_DELAY * (1 + attempt))
|
65 |
return {"error": "Request failed after multiple retries."}
|
66 |
|
67 |
def tool_search_web(query: str, num_results: int = NUM_RESULTS, safesearch: str = "moderate",
|
68 |
time_filter: str = "", region: str = "wt-wt", language: str = "en-us") -> list:
|
69 |
try:
|
70 |
+
with DDGS() as ddgs:
|
71 |
results = [r for r in ddgs.text(query, max_results=num_results, safesearch=safesearch,
|
72 |
+
time=time_filter, region=region, hreflang=language)]
|
73 |
if results:
|
74 |
return [{"title": r["title"], "snippet": r["body"], "url": r["href"]} for r in results]
|
75 |
else:
|
|
|
101 |
|
102 |
reasoning_input += "\nProvide a thorough, nuanced analysis that builds upon previous reasoning if applicable. Consider multiple perspectives and potential contradictions in the search results."
|
103 |
|
104 |
+
reasoning_output = hf_inference(REASONING_LLM_MODEL, reasoning_input)
|
105 |
|
106 |
if isinstance(reasoning_output, dict) and "generated_text" in reasoning_output:
|
107 |
return reasoning_output["generated_text"].strip()
|
|
|
114 |
return "No insights to summarize."
|
115 |
|
116 |
summarization_input = f"Synthesize the following insights into a cohesive and comprehensive summary regarding: '{prompt}'\n\n"
|
117 |
+
summarization_input += "\n\n".join(insights[-MAX_HISTORY_ITEMS:])
|
118 |
|
119 |
if contradictions:
|
120 |
summarization_input += "\n\nAddress these specific contradictions:\n" + "\n".join(contradictions)
|
121 |
|
122 |
summarization_input += "\n\nProvide a well-structured summary that:\n1. Presents the main findings\n2. Acknowledges limitations and uncertainties\n3. Highlights areas of consensus and disagreement\n4. Suggests potential directions for further inquiry"
|
123 |
|
124 |
+
summarization_output = hf_inference(MAIN_LLM_MODEL, summarization_input)
|
125 |
|
126 |
if isinstance(summarization_output, dict) and "generated_text" in summarization_output:
|
127 |
return summarization_output["generated_text"].strip()
|
|
|
130 |
return "Could not generate a summary due to an error."
|
131 |
|
132 |
def tool_generate_search_query(prompt: str, previous_queries: list = [],
|
133 |
+
failed_queries: list = [], focus_areas: list = []) -> str:
|
134 |
query_gen_input = f"Generate an effective search query for the following prompt: {prompt}\n"
|
135 |
|
136 |
if previous_queries:
|
|
|
146 |
query_gen_input += "Refine the search query based on previous queries, aiming for more precise results.\n"
|
147 |
query_gen_input += "Search Query:"
|
148 |
|
149 |
+
query_gen_output = hf_inference(MAIN_LLM_MODEL, query_gen_input)
|
150 |
|
151 |
if isinstance(query_gen_output, dict) and 'generated_text' in query_gen_output:
|
152 |
return query_gen_output['generated_text'].strip()
|
|
|
155 |
return ""
|
156 |
|
157 |
def tool_critique_reasoning(reasoning_output: str, prompt: str,
|
158 |
+
previous_critiques: list = []) -> str:
|
159 |
critique_input = f"Critically evaluate the following reasoning output in relation to the prompt:\n\nPrompt: {prompt}\n\nReasoning: {reasoning_output}\n\n"
|
160 |
|
161 |
if previous_critiques:
|
|
|
163 |
|
164 |
critique_input += "Identify any flaws, biases, logical fallacies, unsupported claims, or areas for improvement. Be specific and constructive. Suggest concrete ways to enhance the reasoning."
|
165 |
|
166 |
+
critique_output = hf_inference(CRITIC_LLM_MODEL, critique_input)
|
167 |
|
168 |
if isinstance(critique_output, dict) and "generated_text" in critique_output:
|
169 |
return critique_output["generated_text"].strip()
|
|
|
178 |
contradiction_input = "Identify specific contradictions in these insights:\n\n" + "\n\n".join(insights[-MAX_HISTORY_ITEMS:])
|
179 |
contradiction_input += "\n\nList each contradiction as a separate numbered point. If no contradictions exist, respond with 'No contradictions found.'"
|
180 |
|
181 |
+
contradiction_output = hf_inference(CRITIC_LLM_MODEL, contradiction_input)
|
182 |
|
183 |
if isinstance(contradiction_output, dict) and "generated_text" in contradiction_output:
|
184 |
result = contradiction_output["generated_text"].strip()
|
185 |
if result == "No contradictions found.":
|
186 |
return []
|
187 |
|
|
|
188 |
contradictions = re.findall(r'\d+\.\s+(.*?)(?=\d+\.|$)', result, re.DOTALL)
|
189 |
return [c.strip() for c in contradictions if c.strip()]
|
190 |
|
|
|
192 |
return []
|
193 |
|
194 |
def tool_identify_focus_areas(prompt: str, insights: list = [],
|
195 |
+
failed_areas: list = []) -> list:
|
196 |
focus_input = f"Based on this research prompt: '{prompt}'\n\n"
|
197 |
|
198 |
if insights:
|
199 |
+
focus_input += "And these existing insights:\n" + "\n".join(insights[-3:]) + "\n\n"
|
200 |
|
201 |
if failed_areas:
|
202 |
focus_input += f"These focus areas didn't yield useful results: {', '.join(failed_areas)}\n\n"
|
203 |
|
204 |
focus_input += "Identify 2-3 specific aspects that should be investigated further to get a complete understanding. Be precise and prioritize underexplored areas."
|
205 |
|
206 |
+
focus_output = hf_inference(MAIN_LLM_MODEL, focus_input)
|
207 |
|
208 |
if isinstance(focus_output, dict) and "generated_text" in focus_output:
|
209 |
result = focus_output["generated_text"].strip()
|
|
|
210 |
areas = re.findall(r'(?:^|\n)(?:\d+\.|\*|\-)\s*(.*?)(?=(?:\n(?:\d+\.|\*|\-|$))|$)', result)
|
211 |
+
return [area.strip() for area in areas if area.strip()][:3]
|
212 |
|
213 |
logger.error(f"Failed to identify focus areas: {focus_output}")
|
214 |
return []
|
|
|
221 |
prompt_embedding = main_similarity_model.encode(prompt, convert_to_tensor=True)
|
222 |
filtered_results = []
|
223 |
|
|
|
224 |
seen_snippets = set()
|
225 |
if previous_snippets:
|
226 |
seen_snippets.update(previous_snippets)
|
|
|
228 |
for result in search_results:
|
229 |
combined_text = result['title'] + " " + result['snippet']
|
230 |
|
|
|
231 |
if result['snippet'] in seen_snippets:
|
232 |
continue
|
233 |
|
|
|
239 |
filtered_results.append(result)
|
240 |
seen_snippets.add(result['snippet'])
|
241 |
|
|
|
242 |
filtered_results.sort(key=lambda x: x.get('relevance_score', 0), reverse=True)
|
243 |
return filtered_results
|
244 |
|
|
|
246 |
logger.error(f"Error during filtering: {e}")
|
247 |
return search_results
|
248 |
|
|
|
249 |
def tool_extract_key_entities(prompt: str) -> list:
|
250 |
entity_input = f"Extract the key entities (people, organizations, concepts, technologies, etc.) from this research prompt that should be investigated individually:\n\n{prompt}\n\nList only the most important 3-5 entities, one per line."
|
251 |
|
252 |
+
entity_output = hf_inference(MAIN_LLM_MODEL, entity_input)
|
253 |
|
254 |
if isinstance(entity_output, dict) and "generated_text" in entity_output:
|
255 |
result = entity_output["generated_text"].strip()
|
|
|
256 |
entities = [e.strip() for e in result.split('\n') if e.strip()]
|
257 |
+
return entities[:5]
|
258 |
|
259 |
logger.error(f"Failed to extract key entities: {entity_output}")
|
260 |
return []
|
261 |
|
|
|
262 |
def tool_meta_analyze(entity_insights: Dict[str, list], prompt: str) -> str:
|
263 |
if not entity_insights:
|
264 |
return "No entity insights to analyze."
|
|
|
267 |
|
268 |
for entity, insights in entity_insights.items():
|
269 |
if insights:
|
270 |
+
meta_input += f"\n--- {entity} ---\n" + insights[-1] + "\n"
|
271 |
|
272 |
meta_input += "\nProvide a high-level synthesis that identifies:\n1. Common themes across entities\n2. Important differences\n3. How these entities interact or influence each other\n4. The broader implications for the original research question"
|
273 |
|
274 |
+
meta_output = hf_inference(MAIN_LLM_MODEL, meta_input)
|
275 |
|
276 |
if isinstance(meta_output, dict) and "generated_text" in meta_output:
|
277 |
return meta_output["generated_text"].strip()
|
|
|
279 |
logger.error(f"Failed to perform meta-analysis: {meta_output}")
|
280 |
return "Could not generate a meta-analysis due to an error."
|
281 |
|
|
|
282 |
tools = {
|
283 |
"search_web": {
|
284 |
"function": tool_search_web,
|
|
|
365 |
|
366 |
def create_prompt(task_description, user_input, available_tools, context):
|
367 |
prompt = f"""{task_description}
|
|
|
368 |
User Input:
|
369 |
{user_input}
|
|
|
370 |
Available Tools:
|
371 |
"""
|
372 |
for tool_name, tool_data in available_tools.items():
|
|
|
375 |
for param_name, param_data in tool_data["parameters"].items():
|
376 |
prompt += f" - {param_name} ({param_data['type']}): {param_data['description']}\n"
|
377 |
|
|
|
378 |
recent_context = context[-MAX_CONTEXT_ITEMS:] if len(context) > MAX_CONTEXT_ITEMS else context
|
379 |
|
380 |
prompt += "\nContext (most recent items):\n"
|
|
|
385 |
Instructions:
|
386 |
Select the BEST tool and parameters for the current research stage. Output valid JSON. If no tool is appropriate, respond with {}.
|
387 |
Only use provided tools. Be strategic about which tool to use next based on the research progress so far.
|
|
|
388 |
Example:
|
389 |
{"tool": "search_web", "parameters": {"query": "Eiffel Tower location"}}
|
|
|
390 |
Output:
|
391 |
"""
|
392 |
return prompt
|
|
|
407 |
contradictions = []
|
408 |
research_session_id = str(uuid4())
|
409 |
|
|
|
410 |
key_entities = tool_extract_key_entities(prompt=prompt)
|
411 |
if key_entities:
|
412 |
context.append(f"Identified key entities: {key_entities}")
|
413 |
intermediate_output += f"Identified key entities for focused research: {key_entities}\n"
|
414 |
|
|
|
415 |
entity_progress = {entity: {'queries': [], 'insights': []} for entity in key_entities}
|
416 |
+
entity_progress['general'] = {'queries': [], 'insights': []}
|
417 |
|
418 |
for i in range(MAX_ITERATIONS):
|
|
|
419 |
if key_entities and i > 0:
|
|
|
420 |
entities_to_process = key_entities + ['general']
|
421 |
current_entity = entities_to_process[i % len(entities_to_process)]
|
422 |
else:
|
|
|
424 |
|
425 |
context.append(f"Current focus: {current_entity}")
|
426 |
|
|
|
427 |
if i == 0:
|
428 |
initial_query = tool_generate_search_query(prompt=prompt)
|
429 |
if initial_query:
|
|
|
447 |
failed_queries.append(initial_query)
|
448 |
context.append(f"Initial query yielded no relevant results: {initial_query}")
|
449 |
|
|
|
450 |
elif current_entity != 'general':
|
451 |
entity_query = tool_generate_search_query(
|
452 |
prompt=f"{prompt} focusing specifically on {current_entity}",
|
|
|
458 |
previous_queries.append(entity_query)
|
459 |
entity_progress[current_entity]['queries'].append(entity_query)
|
460 |
|
|
|
461 |
search_results = tool_search_web(query=entity_query)
|
462 |
filtered_search_results = filter_results(search_results,
|
463 |
f"{prompt} {current_entity}",
|
464 |
previous_snippets=seen_snippets)
|
465 |
|
|
|
466 |
for result in filtered_search_results:
|
467 |
seen_snippets.add(result['snippet'])
|
468 |
|
469 |
if filtered_search_results:
|
470 |
context.append(f"Entity Search for {current_entity}: {len(filtered_search_results)} results")
|
471 |
|
|
|
472 |
entity_reasoning = tool_reason(
|
473 |
prompt=f"{prompt} focusing on {current_entity}",
|
474 |
search_results=filtered_search_results,
|
|
|
480 |
all_insights.append(entity_reasoning)
|
481 |
entity_progress[current_entity]['insights'].append(entity_reasoning)
|
482 |
|
|
|
483 |
if current_entity not in entity_specific_insights:
|
484 |
entity_specific_insights[current_entity] = []
|
485 |
entity_specific_insights[current_entity].append(entity_reasoning)
|
|
|
489 |
failed_queries.append(entity_query)
|
490 |
context.append(f"Entity query for {current_entity} yielded no relevant results")
|
491 |
|
|
|
492 |
llm_prompt = create_prompt(task_description, prompt, tools, context)
|
493 |
+
llm_response = hf_inference(MAIN_LLM_MODEL, llm_prompt)
|
494 |
|
495 |
if isinstance(llm_response, dict) and "error" in llm_response:
|
496 |
intermediate_output += f"LLM Error: {llm_response['error']}\n"
|
|
|
514 |
|
515 |
if not tool_name:
|
516 |
if all_insights:
|
517 |
+
if i > MAX_ITERATIONS // 2:
|
|
|
518 |
break
|
519 |
continue
|
520 |
|
|
|
574 |
prompt if current_entity == 'general' else f"{prompt} {current_entity}",
|
575 |
previous_snippets=seen_snippets)
|
576 |
|
|
|
577 |
for r in filtered_result:
|
578 |
seen_snippets.add(r['snippet'])
|
579 |
|
|
|
603 |
elif tool_name == "identify_contradictions":
|
604 |
result = tool["function"](**parameters)
|
605 |
if result:
|
606 |
+
contradictions = result
|
607 |
context.append(f"Identified contradictions: {result}")
|
608 |
|
609 |
elif tool_name == "identify_focus_areas":
|
|
|
611 |
parameters['failed_areas'] = failed_areas
|
612 |
result = tool["function"](**parameters)
|
613 |
if result:
|
|
|
614 |
old_focus = set(focus_areas)
|
615 |
focus_areas = result
|
616 |
failed_areas.extend([area for area in old_focus if area not in result])
|
|
|
623 |
parameters['prompt'] = prompt
|
624 |
result = tool["function"](**parameters)
|
625 |
if result:
|
626 |
+
all_insights.append(result)
|
627 |
context.append(f"Meta-analysis across entities: {result[:200]}...")
|
628 |
|
629 |
else:
|
630 |
result = tool["function"](**parameters)
|
631 |
|
|
|
632 |
result_str = str(result)
|
633 |
if len(result_str) > 500:
|
634 |
result_str = result_str[:500] + "..."
|
635 |
|
636 |
intermediate_output += f"Iteration {i+1} - Result: {result_str}\n"
|
637 |
|
|
|
638 |
result_context = result_str
|
639 |
+
if len(result_str) > 300:
|
640 |
result_context = result_str[:300] + "..."
|
641 |
context.append(f"Used: {tool_name}, Result: {result_context}")
|
642 |
|
643 |
except Exception as e:
|
644 |
logger.error(f"Error with {tool_name}: {str(e)}")
|
645 |
context.append(f"Error with {tool_name}: {str(e)}")
|
646 |
+
intermediate_output += f"Iteration {i+1} - Error: {str(e)}\n"
|
647 |
continue
|
648 |
|
|
|
649 |
if len(entity_specific_insights) > 1 and len(all_insights) > 2:
|
650 |
meta_analysis = tool_meta_analyze(entity_insights=entity_specific_insights, prompt=prompt)
|
651 |
if meta_analysis:
|
652 |
all_insights.append(meta_analysis)
|
653 |
intermediate_output += f"Final Meta-Analysis: {meta_analysis[:500]}...\n"
|
654 |
|
|
|
655 |
if all_insights:
|
656 |
final_result = tool_summarize(all_insights, prompt, contradictions)
|
657 |
else:
|
658 |
final_result = "Could not find meaningful information despite multiple attempts."
|
659 |
|
|
|
660 |
full_output = f"**Research Prompt:** {prompt}\n\n"
|
661 |
|
662 |
if key_entities:
|
|
|
672 |
|
673 |
full_output += f"**Final Analysis:**\n{final_result}\n\n"
|
674 |
|
|
|
675 |
full_output += f"Research Session ID: {research_session_id}\n"
|
676 |
full_output += f"Completed at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
|
677 |
full_output += f"Total iterations: {i+1}\n"
|
|
|
721 |
["How has artificial intelligence influenced medical diagnostics in the past five years, and what are the ethical considerations?"]
|
722 |
],
|
723 |
theme="default",
|
724 |
+
cache_examples=False,
|
725 |
css=custom_css,
|
726 |
flagging_mode='never',
|
727 |
analytics_enabled=False,
|
|
|
734 |
<p>Results should be verified with additional sources. Not suitable for medical, legal, or emergency use.</p>
|
735 |
</div>
|
736 |
"""
|
737 |
+
|
738 |
|
739 |
# Launch the interface
|
740 |
iface.launch(share=False)
|