File size: 3,842 Bytes
659b71a 7496a0d 659b71a 51aa4b0 7496a0d 51aa4b0 7496a0d 51aa4b0 7496a0d 659b71a 7496a0d 659b71a c9ed9d2 7496a0d 659b71a c9ed9d2 659b71a bdca1f2 9cca1b7 7a45f5b ba61b81 c9ed9d2 ba61b81 659b71a ef333ce 7496a0d 9f10f4b dfa1dab ba61b81 38b1507 ba61b81 dfa1dab ba61b81 dfa1dab ba61b81 dfa1dab 7496a0d a68ae60 fdb0ac9 659b71a 7496a0d 659b71a 7496a0d 659b71a 7496a0d 659b71a a28b6b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import streamlit as st
from PIL import Image
import tensorflow as tf
import numpy as np
from keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import os
# Load custom CTC Layer if necessary
class CTCLayer(tf.keras.layers.Layer):
def __init__(self, name=None):
super().__init__(name=name)
self.loss_fn = tf.keras.backend.ctc_batch_cost
def call(self, y_true, y_pred, input_length, label_length):
# Compute the training-time loss value and add it
# to the layer using `self.add_loss()`.
loss = self.loss_fn(y_true, y_pred, input_length, label_length)
self.add_loss(loss)
# On test time, just return the computed loss
return loss
# Load the trained model with a custom CTC layer if needed
@st.cache_resource
def load_model():
model_path = "model_ocr.h5" # Update with the correct model file path
model = tf.keras.models.load_model(model_path, custom_objects={"CTCLayer": CTCLayer})
return model
model = load_model()
# Menambahkan definisi img_width dan img_height
img_width, img_height = 200, 50 # Ganti sesuai dimensi input gambar yang digunakan oleh model Anda
# Definisikan max_length (misalnya panjang label maksimal)
max_length = 50 # Ganti sesuai dengan panjang label teks maksimal yang diinginkan
# Pemetaan karakter yang mencakup huruf (kapital dan kecil) serta angka
characters = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',
'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R',
'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
# Preprocessing gambar untuk memastikan bahwa gambar sesuai dengan input yang diinginkan
def prepare_image(img):
# Resize gambar ke ukuran yang diinginkan
img = img.resize((img_width, img_height))
# Konversi ke array dan normalisasi gambar
img_array = img_to_array(img) / 255.0 # Normalisasi
# Tambahkan dimensi batch dan sesuaikan dengan dimensi yang diinginkan model
img_array = np.expand_dims(img_array, axis=0) # Batch size 1
img_array = np.transpose(img_array, (0, 2, 1, 3)) # Untuk model dengan dimensi (batch, width, height, channels)
return img_array
def decode_batch_predictions(pred):
pred_texts = []
# Loop untuk setiap prediksi dalam batch
for i in range(pred.shape[0]):
# Mengambil argmax untuk mendapatkan indeks dengan probabilitas tertinggi
pred_indices = np.argmax(pred[i], axis=-1) # Ambil argmax untuk setiap karakter
# Memetakan indeks ke karakter (mengecualikan padding dan placeholder)
pred_text = ''.join([characters[int(c)] for c in pred_indices if c not in [-1, 0]])
# Menambahkan hasil teks untuk batch ke pred_texts
pred_texts.append(pred_text)
return pred_texts
def run():
st.title("OCR Model Deployment")
# Upload image
img_file = st.file_uploader("Choose an Image", type=["jpg", "png"])
if img_file is not None:
img = Image.open(img_file).convert('L') # Convert to grayscale if needed
st.image(img, use_column_width=True)
# Save the uploaded image
upload_dir = './upload_images/'
os.makedirs(upload_dir, exist_ok=True)
save_image_path = os.path.join(upload_dir, img_file.name)
with open(save_image_path, "wb") as f:
f.write(img_file.getbuffer())
# Process the image and make prediction
pred_texts = prepare_image(img)
# Show predicted text
st.success(f"**Predicted Text: {pred_texts[0]}**")
if __name__ == "__main__":
run()
|