File size: 3,842 Bytes
659b71a
 
 
 
7496a0d
 
659b71a
51aa4b0
7496a0d
 
 
 
 
51aa4b0
7496a0d
 
 
 
 
51aa4b0
7496a0d
 
659b71a
7496a0d
659b71a
c9ed9d2
7496a0d
 
 
659b71a
c9ed9d2
659b71a
bdca1f2
 
 
 
9cca1b7
 
 
7a45f5b
 
 
 
 
 
 
 
 
ba61b81
c9ed9d2
ba61b81
 
 
 
 
 
 
 
659b71a
ef333ce
7496a0d
9f10f4b
dfa1dab
ba61b81
38b1507
ba61b81
 
dfa1dab
ba61b81
 
dfa1dab
ba61b81
 
dfa1dab
7496a0d
a68ae60
fdb0ac9
659b71a
7496a0d
 
 
 
659b71a
 
7496a0d
 
659b71a
7496a0d
 
 
 
 
 
 
 
 
 
 
 
659b71a
a28b6b5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import streamlit as st
from PIL import Image
import tensorflow as tf
import numpy as np
from keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import os

# Load custom CTC Layer if necessary
class CTCLayer(tf.keras.layers.Layer):
    def __init__(self, name=None):
        super().__init__(name=name)
        self.loss_fn = tf.keras.backend.ctc_batch_cost

    def call(self, y_true, y_pred, input_length, label_length):
        # Compute the training-time loss value and add it
        # to the layer using `self.add_loss()`.
        loss = self.loss_fn(y_true, y_pred, input_length, label_length)
        self.add_loss(loss)

        # On test time, just return the computed loss
        return loss

# Load the trained model with a custom CTC layer if needed
@st.cache_resource
def load_model():
    model_path = "model_ocr.h5"  # Update with the correct model file path
    model = tf.keras.models.load_model(model_path, custom_objects={"CTCLayer": CTCLayer})
    return model

model = load_model()


# Menambahkan definisi img_width dan img_height
img_width, img_height = 200, 50  # Ganti sesuai dimensi input gambar yang digunakan oleh model Anda

# Definisikan max_length (misalnya panjang label maksimal)
max_length = 50  # Ganti sesuai dengan panjang label teks maksimal yang diinginkan

# Pemetaan karakter yang mencakup huruf (kapital dan kecil) serta angka
characters = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 
              'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 
              'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 
              'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 
              'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 
              'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']


# Preprocessing gambar untuk memastikan bahwa gambar sesuai dengan input yang diinginkan
def prepare_image(img):
    # Resize gambar ke ukuran yang diinginkan
    img = img.resize((img_width, img_height))
    # Konversi ke array dan normalisasi gambar
    img_array = img_to_array(img) / 255.0  # Normalisasi
    # Tambahkan dimensi batch dan sesuaikan dengan dimensi yang diinginkan model
    img_array = np.expand_dims(img_array, axis=0)  # Batch size 1
    img_array = np.transpose(img_array, (0, 2, 1, 3))  # Untuk model dengan dimensi (batch, width, height, channels)
    return img_array


def decode_batch_predictions(pred):
    pred_texts = []
    
    # Loop untuk setiap prediksi dalam batch
    for i in range(pred.shape[0]):
        # Mengambil argmax untuk mendapatkan indeks dengan probabilitas tertinggi
        pred_indices = np.argmax(pred[i], axis=-1)  # Ambil argmax untuk setiap karakter
        
        # Memetakan indeks ke karakter (mengecualikan padding dan placeholder)
        pred_text = ''.join([characters[int(c)] for c in pred_indices if c not in [-1, 0]])
        
        # Menambahkan hasil teks untuk batch ke pred_texts
        pred_texts.append(pred_text)
    
    return pred_texts

    
def run():
    st.title("OCR Model Deployment")
    
    # Upload image
    img_file = st.file_uploader("Choose an Image", type=["jpg", "png"])

    if img_file is not None:
        img = Image.open(img_file).convert('L')  # Convert to grayscale if needed
        st.image(img, use_column_width=True)

        # Save the uploaded image
        upload_dir = './upload_images/'
        os.makedirs(upload_dir, exist_ok=True)
        save_image_path = os.path.join(upload_dir, img_file.name)
        with open(save_image_path, "wb") as f:
            f.write(img_file.getbuffer())

        # Process the image and make prediction
        pred_texts = prepare_image(img)
        
        # Show predicted text
        st.success(f"**Predicted Text: {pred_texts[0]}**")

if __name__ == "__main__":
    run()