Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
from tensorflow.keras.models import load_model | |
import tensorflow as tf | |
import numpy as np | |
from keras.preprocessing.image import img_to_array | |
import os | |
def load_model(): | |
model_path = "model.keras" # Update with the absolute file path | |
return tf.keras.models.load_model(model_path) | |
model = load_model() | |
def prepare_image(img): | |
img = img.resize((220, 220)) | |
img_array = img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
prediction = model.predict(img_array) | |
predicted_class = "Smoking" if prediction > 0.5 else "Not Smoking" | |
return predicted_class, prediction[0] | |
def run(): | |
st.title("Smoking or Not Smoking Detection") | |
img_file = st.file_uploader("Choose an Image", type=["jpg", "png"]) | |
if img_file is not None: | |
img = Image.open(img_file).resize((250, 250)) | |
st.image(img, use_column_width=False) | |
# Create the directory if it doesn't exist | |
upload_dir = './upload_images/' | |
os.makedirs(upload_dir, exist_ok=True) | |
save_image_path = os.path.join(upload_dir, img_file.name) | |
with open(save_image_path, "wb") as f: | |
f.write(img_file.getbuffer()) | |
predicted_class, score = prepare_image(img) | |
st.success(f"**Predicted : {predicted_class}, Score: {score}**") | |
run() | |