RedaAlami commited on
Commit
fbf704f
·
verified ·
1 Parent(s): 7de3902

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -0
app.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load fine-tuned model from Hugging Face Hub
5
+ t5_recommender = pipeline(model="RedaAlami/t5_recommendation_sports_equipment_english")
6
+
7
+ def recommend(items_purchased, candidates):
8
+ prompt = f"ITEMS PURCHASED: {{{items_purchased}}} - CANDIDATES FOR RECOMMENDATION: {{{candidates}}} - RECOMMENDATION: "
9
+ model_output = t5_recommender(prompt)
10
+ recommendation = model_output[0]['generated_text']
11
+ return recommendation
12
+
13
+ with gr.Blocks() as demo:
14
+ gr.Markdown("# Sports Equipment Recommender")
15
+ with gr.Row():
16
+ with gr.Column():
17
+ items_input = gr.Textbox(label="Items Purchased")
18
+ candidates_input = gr.Textbox(label="Candidates for Recommendation")
19
+ with gr.Column():
20
+ recommendation_output = gr.Textbox(label="Recommendation")
21
+
22
+ recommend_button = gr.Button("Get Recommendation")
23
+ recommend_button.click(fn=recommend, inputs=[items_input, candidates_input], outputs=recommendation_output)
24
+
25
+ demo.launch()