Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load fine-tuned model from Hugging Face Hub
|
5 |
+
t5_recommender = pipeline(model="RedaAlami/t5_recommendation_sports_equipment_english")
|
6 |
+
|
7 |
+
def recommend(items_purchased, candidates):
|
8 |
+
prompt = f"ITEMS PURCHASED: {{{items_purchased}}} - CANDIDATES FOR RECOMMENDATION: {{{candidates}}} - RECOMMENDATION: "
|
9 |
+
model_output = t5_recommender(prompt)
|
10 |
+
recommendation = model_output[0]['generated_text']
|
11 |
+
return recommendation
|
12 |
+
|
13 |
+
with gr.Blocks() as demo:
|
14 |
+
gr.Markdown("# Sports Equipment Recommender")
|
15 |
+
with gr.Row():
|
16 |
+
with gr.Column():
|
17 |
+
items_input = gr.Textbox(label="Items Purchased")
|
18 |
+
candidates_input = gr.Textbox(label="Candidates for Recommendation")
|
19 |
+
with gr.Column():
|
20 |
+
recommendation_output = gr.Textbox(label="Recommendation")
|
21 |
+
|
22 |
+
recommend_button = gr.Button("Get Recommendation")
|
23 |
+
recommend_button.click(fn=recommend, inputs=[items_input, candidates_input], outputs=recommendation_output)
|
24 |
+
|
25 |
+
demo.launch()
|