import gradio as gr from transformers import pipeline # Load fine-tuned model from Hugging Face Hub t5_recommender = pipeline(model="RedaAlami/t5_recommendation_sports_equipment_english") def recommend(items_purchased, candidates): prompt = f"ITEMS PURCHASED: {{{items_purchased}}} - CANDIDATES FOR RECOMMENDATION: {{{candidates}}} - RECOMMENDATION: " model_output = t5_recommender(prompt) recommendation = model_output[0]['generated_text'] return recommendation with gr.Blocks() as demo: gr.Markdown("# Sports Equipment Recommender") with gr.Row(): with gr.Column(): items_input = gr.Textbox(label="Items Purchased") candidates_input = gr.Textbox(label="Candidates for Recommendation") with gr.Column(): recommendation_output = gr.Textbox(label="Recommendation") recommend_button = gr.Button("Get Recommendation") recommend_button.click(fn=recommend, inputs=[items_input, candidates_input], outputs=recommendation_output) demo.launch()