File size: 1,331 Bytes
4b8202a
 
38d9b9a
 
 
 
 
4b8202a
 
 
 
38d9b9a
4b8202a
 
 
 
 
 
 
 
 
38d9b9a
2d8d396
 
 
 
 
4b8202a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

app = FastAPI()

class TextGenerationRequest(BaseModel):
    prompt: str
    max_length: int = 100
    temperature: float = 0.7

# Load model and tokenizer (force CPU usage)
model_name = "unsloth/Qwen2.5-7B-bnb-4bit"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    torch_dtype=torch.float32,  # Change to float32 for CPU
    device_map="cpu"  # Force CPU usage
)


@app.get("/", tags=["Home"])
def api_home():
    return {'detail': 'Welcome to FastAPI TextGen Tutorial!'}

@app.post("/generate")
async def generate_text(request: TextGenerationRequest):
    try:
        inputs = tokenizer(request.prompt, return_tensors="pt").to("cpu")  # Move to CPU
        outputs = model.generate(
            inputs.input_ids,
            max_length=request.max_length,
            temperature=request.temperature,
            do_sample=True,
        )
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return {"generated_text": generated_text}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))