Gokulavelan's picture
changes
f075bd4
import os
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
# Set Hugging Face cache directory to avoid permission issues in Docker
os.environ["HF_HOME"] = "/app/huggingface_cache"
os.environ["TRANSFORMERS_CACHE"] = "/app/huggingface_cache"
app = FastAPI()
class TextGenerationRequest(BaseModel):
prompt: str
max_length: int = 100
temperature: float = 0.7
# Load model and tokenizer (Force CPU)
model_name = "unsloth/Qwen2.5-7B-bnb-4bit"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float32, # Use float32 for CPU
device_map={"": "cpu"} # Ensure CPU usage
)
@app.get("/")
def api_home():
return {"detail": "Welcome to FastAPI TextGen API!"}
@app.post("/generate")
async def generate_text(request: TextGenerationRequest):
try:
inputs = tokenizer(request.prompt, return_tensors="pt").to("cpu") # Ensure CPU usage
outputs = model.generate(
inputs.input_ids,
max_length=request.max_length,
temperature=request.temperature,
do_sample=True,
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"generated_text": generated_text}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))