Spaces:
Sleeping
Sleeping
Create app_copy.py
Browse files- app_copy.py +314 -0
app_copy.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
import os
|
3 |
+
import pymupdf # PyMuPDF
|
4 |
+
from pptx import Presentation
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
import torch
|
7 |
+
from transformers import CLIPProcessor, CLIPModel
|
8 |
+
from PIL import Image
|
9 |
+
import chromadb
|
10 |
+
import numpy as np
|
11 |
+
from sklearn.decomposition import PCA
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
# Initialize ChromaDB
|
16 |
+
client = chromadb.PersistentClient(path="/data/chroma_db")
|
17 |
+
collection = client.get_or_create_collection(name="knowledge_base")
|
18 |
+
|
19 |
+
# File Paths
|
20 |
+
pdf_file = "Sutures and Suturing techniques.pdf"
|
21 |
+
pptx_file = "impalnt 1.pptx"
|
22 |
+
|
23 |
+
# Initialize Embedding Models
|
24 |
+
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
25 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
26 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
27 |
+
|
28 |
+
# Image Storage Folder
|
29 |
+
IMAGE_FOLDER = "/data/extracted_images"
|
30 |
+
os.makedirs(IMAGE_FOLDER, exist_ok=True)
|
31 |
+
|
32 |
+
# Extract Text from PDF
|
33 |
+
def extract_text_from_pdf(pdf_path):
|
34 |
+
try:
|
35 |
+
doc = pymupdf.open(pdf_path)
|
36 |
+
text = " ".join(page.get_text() for page in doc)
|
37 |
+
return text.strip() if text else None
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Error extracting text from PDF: {e}")
|
40 |
+
return None
|
41 |
+
|
42 |
+
# Extract Text from PPTX
|
43 |
+
def extract_text_from_pptx(pptx_path):
|
44 |
+
try:
|
45 |
+
prs = Presentation(pptx_path)
|
46 |
+
text = " ".join(
|
47 |
+
shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")
|
48 |
+
)
|
49 |
+
return text.strip() if text else None
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error extracting text from PPTX: {e}")
|
52 |
+
return None
|
53 |
+
|
54 |
+
# Extract Images from PDF
|
55 |
+
def extract_images_from_pdf(pdf_path):
|
56 |
+
try:
|
57 |
+
doc = pymupdf.open(pdf_path)
|
58 |
+
images = []
|
59 |
+
for i, page in enumerate(doc):
|
60 |
+
for img_index, img in enumerate(page.get_images(full=True)):
|
61 |
+
xref = img[0]
|
62 |
+
image = doc.extract_image(xref)
|
63 |
+
img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}"
|
64 |
+
with open(img_path, "wb") as f:
|
65 |
+
f.write(image["image"])
|
66 |
+
images.append(img_path)
|
67 |
+
return images
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Error extracting images from PDF: {e}")
|
70 |
+
return []
|
71 |
+
|
72 |
+
# Extract Images from PPTX
|
73 |
+
def extract_images_from_pptx(pptx_path):
|
74 |
+
try:
|
75 |
+
images = []
|
76 |
+
prs = Presentation(pptx_path)
|
77 |
+
for i, slide in enumerate(prs.slides):
|
78 |
+
for shape in slide.shapes:
|
79 |
+
if shape.shape_type == 13:
|
80 |
+
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
|
81 |
+
with open(img_path, "wb") as f:
|
82 |
+
f.write(shape.image.blob)
|
83 |
+
images.append(img_path)
|
84 |
+
return images
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error extracting images from PPTX: {e}")
|
87 |
+
return []
|
88 |
+
|
89 |
+
# Convert Text to Embeddings
|
90 |
+
def get_text_embedding(text):
|
91 |
+
return text_model.encode(text).tolist()
|
92 |
+
|
93 |
+
# Preload PCA instance globally (to maintain consistency across calls)
|
94 |
+
pca = PCA(n_components=384)
|
95 |
+
|
96 |
+
def get_image_embedding(image_path):
|
97 |
+
try:
|
98 |
+
# Load the image
|
99 |
+
image = Image.open(image_path)
|
100 |
+
inputs = processor(images=image, return_tensors="pt")
|
101 |
+
|
102 |
+
# Extract image embeddings
|
103 |
+
with torch.no_grad():
|
104 |
+
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
105 |
+
|
106 |
+
# Print the actual embedding dimension
|
107 |
+
print(f"Image embedding shape: {image_embedding.shape}")
|
108 |
+
|
109 |
+
""" # CASE 1: Embedding is already 384-dimensional ✅
|
110 |
+
if len(image_embedding) == 384:
|
111 |
+
return image_embedding.tolist()
|
112 |
+
|
113 |
+
# CASE 2: Embedding is larger than 384 (e.g., 512) → Apply PCA ✅
|
114 |
+
elif len(image_embedding) > 384:
|
115 |
+
|
116 |
+
pca = PCA(n_components=384, svd_solver='auto') # Auto solver for stability
|
117 |
+
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
|
118 |
+
print(f"Reduced image embedding shape: {image_embedding.shape}")
|
119 |
+
|
120 |
+
|
121 |
+
# CASE 3: Embedding is smaller than 384 → Apply Padding ❌
|
122 |
+
else:
|
123 |
+
padding = np.zeros(384 - len(image_embedding)) # Create padding vector
|
124 |
+
image_embedding = np.concatenate((image_embedding, padding)) # Append padding"""
|
125 |
+
# Truncate to 384 dimensions
|
126 |
+
image_embedding = image_embedding[:384]
|
127 |
+
|
128 |
+
# Print the final embedding shape
|
129 |
+
print(f"Final Image embedding shape: {image_embedding.shape}")
|
130 |
+
|
131 |
+
return image_embedding.tolist()
|
132 |
+
|
133 |
+
except Exception as e:
|
134 |
+
print(f"❌ Error generating image embedding: {e}")
|
135 |
+
return None
|
136 |
+
|
137 |
+
# Store Data in ChromaDB
|
138 |
+
def store_data(texts, image_paths):
|
139 |
+
for i, text in enumerate(texts):
|
140 |
+
if text:
|
141 |
+
text_embedding = get_text_embedding(text)
|
142 |
+
if len(text_embedding) == 384:
|
143 |
+
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
|
144 |
+
|
145 |
+
all_embeddings = [get_image_embedding(img_path) for img_path in image_paths if get_image_embedding(img_path) is not None]
|
146 |
+
|
147 |
+
if all_embeddings:
|
148 |
+
all_embeddings = np.array(all_embeddings)
|
149 |
+
|
150 |
+
# Apply PCA only if necessary
|
151 |
+
if all_embeddings.shape[1] != 384:
|
152 |
+
pca = PCA(n_components=384)
|
153 |
+
all_embeddings = pca.fit_transform(all_embeddings)
|
154 |
+
|
155 |
+
for j, img_path in enumerate(image_paths):
|
156 |
+
collection.add(ids=[f"image_{j}"], embeddings=[all_embeddings[j].tolist()], documents=[img_path])
|
157 |
+
|
158 |
+
print("Data stored successfully!")
|
159 |
+
|
160 |
+
# Process and Store from Files
|
161 |
+
def process_and_store(pdf_path=None, pptx_path=None):
|
162 |
+
texts, images = [], []
|
163 |
+
if pdf_path:
|
164 |
+
pdf_text = extract_text_from_pdf(pdf_path)
|
165 |
+
if pdf_text:
|
166 |
+
texts.append(pdf_text)
|
167 |
+
images.extend(extract_images_from_pdf(pdf_path))
|
168 |
+
if pptx_path:
|
169 |
+
pptx_text = extract_text_from_pptx(pptx_path)
|
170 |
+
if pptx_text:
|
171 |
+
texts.append(pptx_text)
|
172 |
+
images.extend(extract_images_from_pptx(pptx_path))
|
173 |
+
store_data(texts, images)
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
# FastAPI Endpoints
|
178 |
+
@app.get("/")
|
179 |
+
def greet_json():
|
180 |
+
# Run Data Processing
|
181 |
+
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
182 |
+
return {"Document store": "created!"}
|
183 |
+
|
184 |
+
@app.get("/retrieval")
|
185 |
+
def retrieval(query: str):
|
186 |
+
try:
|
187 |
+
query_embedding = get_text_embedding(query)
|
188 |
+
results = collection.query(query_embeddings=[query_embedding], n_results=5)
|
189 |
+
#return {"results": results.get("documents", [])}
|
190 |
+
# Set a similarity threshold (adjust as needed)
|
191 |
+
SIMILARITY_THRESHOLD = 0.7
|
192 |
+
|
193 |
+
# Extract documents and similarity scores
|
194 |
+
documents = results.get("documents", [[]])[0] # Ensure we get the first list
|
195 |
+
distances = results.get("distances", [[]])[0] # Ensure we get the first list
|
196 |
+
|
197 |
+
# Filter results based on similarity threshold
|
198 |
+
filtered_results = [
|
199 |
+
doc for doc, score in zip(documents, distances) if score >= SIMILARITY_THRESHOLD
|
200 |
+
]
|
201 |
+
|
202 |
+
# Return filtered results or indicate no match found
|
203 |
+
if filtered_results:
|
204 |
+
return {"results": filtered_results}
|
205 |
+
else:
|
206 |
+
return {"results": "No relevant match found in ChromaDB."}
|
207 |
+
except Exception as e:
|
208 |
+
return {"error": str(e)}
|
209 |
+
|
210 |
+
import pandas as pd
|
211 |
+
from io import StringIO
|
212 |
+
import os
|
213 |
+
import base64
|
214 |
+
@app.get("/save_file_dify")
|
215 |
+
def save_file_dify(csv_data: str):
|
216 |
+
|
217 |
+
# Split into lines
|
218 |
+
lines = csv_data.split("\n")
|
219 |
+
|
220 |
+
# Find the max number of columns
|
221 |
+
max_cols = max(line.count(",") + 1 for line in lines if line.strip())
|
222 |
+
|
223 |
+
# Normalize all rows to have the same number of columns
|
224 |
+
fixed_lines = [line + "," * (max_cols - line.count(",") - 1) for line in lines]
|
225 |
+
|
226 |
+
# Reconstruct CSV string
|
227 |
+
fixed_csv_data = "\n".join(fixed_lines)
|
228 |
+
|
229 |
+
# Convert CSV string to DataFrame
|
230 |
+
df = pd.read_csv(StringIO(fixed_csv_data))
|
231 |
+
|
232 |
+
|
233 |
+
#save in dify dataset and return download link
|
234 |
+
download_link = get_download_link_dify(df)
|
235 |
+
|
236 |
+
return download_link
|
237 |
+
|
238 |
+
|
239 |
+
def get_download_link_dify(df):
|
240 |
+
# code to save file in dify framework
|
241 |
+
import requests
|
242 |
+
|
243 |
+
# API Configuration
|
244 |
+
BASE_URL = "http://redmindgpt.redmindtechnologies.com:81/v1"
|
245 |
+
DATASET_ID = "084ae979-d101-414b-8854-9bbf5d3a442e"
|
246 |
+
API_KEY = "dataset-feqz5KrqHkFRdWbh2DInt58L"
|
247 |
+
|
248 |
+
dataset_name = 'output_dataset'
|
249 |
+
# Endpoint URL
|
250 |
+
url = f"{BASE_URL}/datasets/{DATASET_ID}/document/create-by-file"
|
251 |
+
print(url)
|
252 |
+
# Headers
|
253 |
+
headers = {
|
254 |
+
"Authorization": f"Bearer {API_KEY}"
|
255 |
+
}
|
256 |
+
|
257 |
+
# Data payload (form data as a plain text string)
|
258 |
+
data_payload = {
|
259 |
+
"data": """
|
260 |
+
{
|
261 |
+
"indexing_technique": "high_quality",
|
262 |
+
"process_rule": {
|
263 |
+
"rules": {
|
264 |
+
"pre_processing_rules": [
|
265 |
+
{"id": "remove_extra_spaces", "enabled": true},
|
266 |
+
{"id": "remove_urls_emails", "enabled": true}
|
267 |
+
],
|
268 |
+
"segmentation": {
|
269 |
+
"separator": "###",
|
270 |
+
"max_tokens": 500
|
271 |
+
}
|
272 |
+
},
|
273 |
+
"mode": "custom"
|
274 |
+
}
|
275 |
+
}
|
276 |
+
"""
|
277 |
+
}
|
278 |
+
|
279 |
+
# Convert DataFrame to binary (in-memory)
|
280 |
+
file_buffer = dataframe_to_binary(df)
|
281 |
+
|
282 |
+
files = {
|
283 |
+
"file": ("output.xlsx", file_buffer, "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
|
284 |
+
}
|
285 |
+
|
286 |
+
# Send the POST request
|
287 |
+
response = requests.post(url, headers=headers, data=data_payload, files=files)
|
288 |
+
print(response)
|
289 |
+
data = response.json()
|
290 |
+
document_id = data['document']['id']
|
291 |
+
|
292 |
+
# code to get download_url
|
293 |
+
url = f"http://redmindgpt.redmindtechnologies.com:81/v1/datasets/{DATASET_ID}/documents/{document_id}/upload-file"
|
294 |
+
|
295 |
+
response = requests.get(url, headers=headers)
|
296 |
+
print(response)
|
297 |
+
|
298 |
+
download_url = response.json().get("download_url")
|
299 |
+
download_url = download_url.replace("download/","")
|
300 |
+
return download_url
|
301 |
+
|
302 |
+
def dataframe_to_binary(df):
|
303 |
+
import io
|
304 |
+
# Create a BytesIO stream
|
305 |
+
output = io.BytesIO()
|
306 |
+
|
307 |
+
# Write the DataFrame to this in-memory buffer as an Excel file
|
308 |
+
df.to_excel(output, index=False, engine="openpyxl")
|
309 |
+
|
310 |
+
# Move the cursor to the beginning of the stream
|
311 |
+
output.seek(0)
|
312 |
+
|
313 |
+
return output
|
314 |
+
|