Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -90,22 +90,28 @@ def extract_images_from_pptx(pptx_path):
|
|
90 |
def get_text_embedding(text):
|
91 |
return text_model.encode(text).tolist()
|
92 |
|
93 |
-
#
|
|
|
|
|
94 |
def get_image_embedding(image_path):
|
95 |
try:
|
|
|
96 |
image = Image.open(image_path)
|
97 |
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
|
98 |
with torch.no_grad():
|
99 |
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
100 |
|
101 |
-
#
|
102 |
if len(image_embedding) != 384:
|
103 |
-
|
104 |
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
|
105 |
|
106 |
return image_embedding.tolist()
|
|
|
107 |
except Exception as e:
|
108 |
-
print(f"Error generating image embedding: {e}")
|
109 |
return None
|
110 |
|
111 |
# Store Data in ChromaDB
|
|
|
90 |
def get_text_embedding(text):
|
91 |
return text_model.encode(text).tolist()
|
92 |
|
93 |
+
# Preload PCA instance globally (to maintain consistency across calls)
|
94 |
+
pca = PCA(n_components=384)
|
95 |
+
|
96 |
def get_image_embedding(image_path):
|
97 |
try:
|
98 |
+
# Load the image
|
99 |
image = Image.open(image_path)
|
100 |
inputs = processor(images=image, return_tensors="pt")
|
101 |
+
|
102 |
+
# Extract image embeddings
|
103 |
with torch.no_grad():
|
104 |
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
105 |
|
106 |
+
# Check if the embedding dimension is already 384
|
107 |
if len(image_embedding) != 384:
|
108 |
+
# Ensure PCA transformation gets the correct shape
|
109 |
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
|
110 |
|
111 |
return image_embedding.tolist()
|
112 |
+
|
113 |
except Exception as e:
|
114 |
+
print(f"❌ Error generating image embedding: {e}")
|
115 |
return None
|
116 |
|
117 |
# Store Data in ChromaDB
|