Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,100 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
|
3 |
app = FastAPI()
|
4 |
-
|
|
|
5 |
@app.get("/")
|
6 |
def greet_json():
|
7 |
return {"Hello": "World!"}
|
8 |
|
9 |
@app.get("/test")
|
10 |
def greet_json():
|
11 |
-
return {"Hello": "Redmind!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
|
3 |
app = FastAPI()
|
4 |
+
client = chromadb.PersistentClient(path="./chroma_db")
|
5 |
+
collection = client.get_collection(name="knowledge_base")
|
6 |
@app.get("/")
|
7 |
def greet_json():
|
8 |
return {"Hello": "World!"}
|
9 |
|
10 |
@app.get("/test")
|
11 |
def greet_json():
|
12 |
+
return {"Hello": "Redmind!"}
|
13 |
+
|
14 |
+
@app.get("/search/")
|
15 |
+
def search(query: str):
|
16 |
+
query_embedding = get_text_embedding(query)
|
17 |
+
results = collection.query(
|
18 |
+
query_embeddings=[query_embedding],
|
19 |
+
n_results=5
|
20 |
+
)
|
21 |
+
return {"results": results["documents"]}
|
22 |
+
|
23 |
+
import fitz
|
24 |
+
|
25 |
+
def extract_text_from_pdf(pdf_path):
|
26 |
+
text = ""
|
27 |
+
doc = fitz.open(pdf_path)
|
28 |
+
for page in doc:
|
29 |
+
text += page.get_text() + "\n"
|
30 |
+
return text
|
31 |
+
|
32 |
+
from pptx import Presentation
|
33 |
+
|
34 |
+
def extract_text_from_pptx(pptx_path):
|
35 |
+
text = ""
|
36 |
+
prs = Presentation(pptx_path)
|
37 |
+
for slide in prs.slides:
|
38 |
+
for shape in slide.shapes:
|
39 |
+
if hasattr(shape, "text"):
|
40 |
+
text += shape.text + "\n"
|
41 |
+
return text
|
42 |
+
|
43 |
+
import os
|
44 |
+
|
45 |
+
def extract_images_from_pdf(pdf_path, output_folder):
|
46 |
+
doc = fitz.open(pdf_path)
|
47 |
+
os.makedirs(output_folder, exist_ok=True)
|
48 |
+
for i, page in enumerate(doc):
|
49 |
+
for img_index, img in enumerate(page.get_images(full=True)):
|
50 |
+
xref = img[0]
|
51 |
+
image = doc.extract_image(xref)
|
52 |
+
img_bytes = image["image"]
|
53 |
+
img_ext = image["ext"]
|
54 |
+
with open(f"{output_folder}/image_{i}_{img_index}.{img_ext}", "wb") as f:
|
55 |
+
f.write(img_bytes)
|
56 |
+
|
57 |
+
def extract_images_from_pptx(pptx_path, output_folder):
|
58 |
+
os.makedirs(output_folder, exist_ok=True)
|
59 |
+
prs = Presentation(pptx_path)
|
60 |
+
for i, slide in enumerate(prs.slides):
|
61 |
+
for shape in slide.shapes:
|
62 |
+
if shape.shape_type == 13: # Picture shape type
|
63 |
+
image = shape.image
|
64 |
+
img_bytes = image.blob
|
65 |
+
img_ext = image.ext
|
66 |
+
with open(f"{output_folder}/image_{i}.{img_ext}", "wb") as f:
|
67 |
+
f.write(img_bytes)
|
68 |
+
from sentence_transformers import SentenceTransformer
|
69 |
+
|
70 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
71 |
+
|
72 |
+
def get_text_embedding(text):
|
73 |
+
return model.encode(text).tolist()
|
74 |
+
from PIL import Image
|
75 |
+
import torch
|
76 |
+
from transformers import CLIPProcessor, CLIPModel
|
77 |
+
|
78 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
79 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
80 |
+
|
81 |
+
def get_image_embedding(image_path):
|
82 |
+
image = Image.open(image_path)
|
83 |
+
inputs = processor(images=image, return_tensors="pt")
|
84 |
+
with torch.no_grad():
|
85 |
+
embedding = clip_model.get_image_features(**inputs)
|
86 |
+
return embedding.squeeze().tolist()
|
87 |
+
import chromadb
|
88 |
+
|
89 |
+
client = chromadb.PersistentClient(path="./chroma_db")
|
90 |
+
collection = client.get_or_create_collection(name="knowledge_base")
|
91 |
+
|
92 |
+
def store_data(texts, images):
|
93 |
+
for i, text in enumerate(texts):
|
94 |
+
text_embedding = get_text_embedding(text)
|
95 |
+
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
|
96 |
+
|
97 |
+
for j, image in enumerate(images):
|
98 |
+
image_embedding = get_image_embedding(image)
|
99 |
+
collection.add(ids=[f"image_{j}"], embeddings=[image_embedding], documents=[image])
|
100 |
+
|